

Feuille de route
“Projet de groupe - Hôtel Neptune”

Projet commencé le 16/01/2025 à remettre le 30/04/2025

Participants :

Tom CLEMENT
Clément SALINGUE
Annalia PRIEUR
Antoine BERTHE

Projet encadré par :

Gregory BOUDRINGHIN

Conc. Expl. BDD - Première Année,
2025

EPSI — Ecole de l’ingénierie
informatique, Arras

Contexte

Le projet porte sur la digitalisation des réservations de l’Hôtel Neptune, un
établissement 3 étoiles situé à Arras, en développant un site web dynamique
en PHP associé à une base de données MySQL. Ce site comprendra deux
volets principaux : une interface pour les administrateurs permettant de
gérer les chambres, les clients et les réservations, et une interface pour les
clients, leur offrant la possibilité de rechercher, réserver et gérer leurs profils.
Le but est de remplacer les méthodes manuelles de gestion actuelles par une
solution numérique plus rapide, fiable et intuitive.

Problématique
Comment créer un site web qui facilite la gestion des chambres, clients et
réservations, tout en garantissant une expérience utilisateur fluide pour les
clients ?

. Sous Problèmes

1.​ Gestion des chambres :
-​ Comment organiser efficacement les informations des chambres

dans une base de données ?

-​ Comment permettre aux administrateurs d’ajouter, modifier et
supprimer des photos associées aux chambres ?

-​ Comment rendre les informations des chambres accessibles et

consultables par les clients selon des critères comme les dates ou
le prix ?

2.​ Gestion des clients :
-​ Comment permettre aux clients de créer, modifier ou supprimer

leurs profils de manière sécurisée ?

-​ Comment organiser les données des clients pour simplifier les
recherches et filtrages dans l’interface administrateur ?

3.​ Gestion des réservations
-​ Comment permettre aux clients de réserver une chambre de

manière intuitive et sécurisée ?

-​ Comment gérer l’annulation des réservations à la fois pour les
clients et les administrateurs ?

-​ Comment afficher les réservations sous forme de tableau,

permettant une visualisation claire et organisée ?

4.​ Fonctionnalités avancées
-​ Comment envoyer automatiquement un e-mail de

confirmation après une réservation ?

-​ Comment générer des factures au format PDF pour les
clients, incluant les détails de leur réservation ?

5.​ Sécurité et performance
-​ Comment garantir la sécurité des données sensibles

(informations personnelles et bancaires) des utilisateurs ?

-​ Comment optimiser les performances des recherches dans
la base de données pour offrir des réponses rapides, même
avec un grand nombre d’utilisateurs ?

.

Brainstorming

1. Gestion des chambres

ADMINISTRATION CLIENT

-​ Ajouter une chambre
(formulaire avec champs de
saisie).

-​ Modifier et supprimer des
chambres existantes.

-​ Gérer des photos associées à
chaque chambre (ajout,
modification, suppression).

-​ Rechercher et trier les
chambres par critères
(disponibilité, type, prix, etc.).

-​ Visualiser les chambres
disponibles sous forme de liste
ou de tableau.

-​ Consulter les détails d’une
chambre (description, photos,
caractéristiques).

-​ Filtrer les chambres selon des
critères comme les dates, le
prix ou le nombre de lits.

2. Gestion des clients

ADMINISTRATION CLIENT

-​ Ajouter, modifier et supprimer
des profils de clients.

-​ Rechercher et trier les clients
par nom, e-mail ou autres
critères pertinents.

-​ Inscription en ligne (création
d’un compte).

-​ Modification et suppression
de leur propre profil.

-​ Consultation de leurs
informations personnelles et
de leurs réservations.

3. Gestion des réservations

ADMINISTRATION CLIENT

-​ Visualiser toutes les
réservations par chambre ou
par date.

-​ Annuler ou modifier une
réservation.

-​ Afficher les réservations sous
forme de tableau avec filtrage
(par date ou chambre).

-​ Réserver une chambre via un
formulaire incluant les dates
souhaitées.

-​ Annuler une réservation en
ligne.

-​ Simuler le paiement d’une
réservation (formulaire avec
champs pour carte bancaire
factice).

4. Fonctionnalités avancées
-​ Envoi d’un e-mail de confirmation aux clients après chaque

réservation.
-​ Génération d’une facture au format PDF pour les réservations

terminées (avec détails).

5. Sécurité et performance
-​ Implémentation de requêtes préparées pour sécuriser les accès à la

base de données.
-​ Validation des données saisies par les utilisateurs (formulaires

sécurisés).
-​ Gestion des sessions et authentification des utilisateurs

(administrateurs et clients).

Description fonctionnelle

Fonctionnalités principales :

-​ Gestion des chambres (CRUD + gestion de photos associées).
-​ Gestion des clients (CRUD).
-​ Réservations (visualisation, filtrage, annulation).
-​ Améliorations (e-mail de confirmation, factures PDF).

Solutions proposées

Afin de résoudre les problèmes identifiés, une solution complète sera
développée.

●​ Qui ? Le projet sera réalisé en groupe de 4 développeurs.
●​ Quoi ? La création d’un site web permettant de gérer efficacement les

réservations.
●​ Comment ? En développant des modules distincts pour chaque

fonctionnalité et en adoptant une méthodologie modulaire.
●​ Où ? Le développement se fera sur un environnement local, avec un

serveur de test PHP et MySQL.
●​ Quand ? Le projet sera découpé en étapes hebdomadaires (détaillées

dans le découpage des tâches).
●​ Pourquoi ? Automatiser les tâches de gestion pour gagner en

efficacité et en fiabilité.

Justification des choix techniques

Le choix de PHP et MySQL est dicté par leur simplicité et leur adaptabilité
pour développer des sites web dynamiques.

Structure du Site

1. Accueil (Page principale)

●​ Contenu :
○​ Présentation de l’hôtel (texte, images).
○​ Boutons de navigation vers les sections principales : chambres,

réservation, connexion.
○​ Informations de contact de l’hôtel (adresse, téléphone, e-mail).

2. Front-office (Espace client)

2.1. Visualisation des chambres

●​ Page : Liste des chambres disponibles.
○​ Filtres : prix, dates, nombre de lits, options (balcon, vue).
○​ Détails d’une chambre : description, galerie photo, prix par nuit,

équipements inclus.

2.2. Réservation d’une chambre

●​ Page : Formulaire de réservation.
○​ Champs : sélection de la chambre, dates d’arrivée et de départ,

informations personnelles.
○​ Vérification de la disponibilité avant validation.
○​ Confirmation et simulation de paiement (champs pour carte

bancaire).

2.3. Gestion du profil

●​ Page : Espace personnel.
○​ Modifier les informations du compte (nom, e-mail, mot de passe,

etc.).
○​ Supprimer son compte.
○​ Visualiser l’historique des réservations.

2.4. Annulation de réservation

●​ Page : Liste des réservations du client.
○​ Option pour annuler une réservation.

3. Back-office (Espace administrateur)

3.1. Gestion des chambres

●​ Page : Liste des chambres.
○​ Ajouter une nouvelle chambre (formulaire).
○​ Modifier les informations d’une chambre existante.
○​ Supprimer une chambre.

3.2. Gestion des clients

●​ Page : Liste des clients.
○​ Ajouter un nouveau client.
○​ Modifier ou supprimer les informations d’un client.

3.3. Gestion des réservations

●​ Page : Liste des réservations.
○​ Visualiser les réservations par chambre ou par date.
○​ Filtrer les réservations selon des critères.
○​ Annuler une réservation pour un client.
○​ Afficher les réservations sous forme de tableau par semaine.

4. Pages transversales

●​ Connexion :
○​ Page commune pour les administrateurs et clients (choix du rôle

après connexion).
●​ Contact :

○​ Formulaire de contact pour joindre l’hôtel.
●​ Erreur 404 :

○​ Page pour les liens invalides ou erreurs de navigation.

Tâches et ordres des tâches:

Pages liées aux chambres

 chambres.html.twig → Afficher toutes les chambres​
 addchambre.html.twig → Ajouter une chambre​
 updatechambre.html.twig → Modifier une chambre

 Pages liées aux clients

 profil.html.twig → Afficher et modifier les informations du client​
 register.html.twig → Page d'inscription​
 login.html.twig → Page de connexion

 Pages liées aux réservations

 reservations.html.twig → Liste des réservations du client​
 reservation_details.html.twig → Voir les détails d’une réservation​
 addreservation.html.twig → Formulaire de réservation

 Pages liées aux paiements

 paiement.html.twig → Page pour entrer les infos de paiement​
 facture.html.twig → Afficher / télécharger la facture

 Pages liées aux avis

 avis.html.twig → Laisser un avis sur une chambre​
 liste_avis.html.twig → Voir tous les avis des clients

 Autres pages

 contact.html.twig → Page de contact​
 administrateur.html.twig → Tableau de bord admin​
 base.html.twig → Fichier de layout principal

Résumé : Ordre des étapes

 1 Finaliser le CRUD Chambre (test, affichage, boutons modifier/supprimer)​
 2️ CRUD Client (ajout, modification, suppression)​
 3️ Connexion & Sessions (Admin vs Client)​
 4️ CRUD Réservations (Ajout, annulation, affichage)​
 5️ Paiement (facultatif)​
 6️ Ajout des relations entre entités

Maquette
MCD:

Pour le MCD, l’explication va se dérouler en plusieurs points :

1)​ l’aspect client : le client a donc la possibilité de laisser un avis, de reçevoir des
notifications sur sa réservation mais aussi de pouvoir regarder les différents
types de réservation.

2)​ Lorsque le client à la possibilité de réserver, il faut qu'à travers cette
réservation il puisse avoir accès aux différentes chambres disponibles ainsi

que leurs options. De plus, si il peut réserver il doit payer et avoir accès à
facture.

3)​ Chaque chambre est liée aux avis donnés par le client mais aussi les médias
soit les images et mis en avant de la chambre.

4)​ Pour finir il reste une table contactMessage qui permet de stocker les
informations du footer du site.

MLD:

On peut donc remarquer que maintenant dans le mld on voit les clés étrangères
dans les différents tables qui sont venu s’inclure grâce au différentes relations
comme la relation père fils mais aussi la relation maillet avec l’apparition de la table
Option comportant la clé primaire de room et RoomOption. ​

Dictionnaire de données

dépendances fonctionnelles
Cancellation :
id -> #reservation_id, reason, refund_amount, cancellation_date, cancelled_by_id
ContactMessage :
id -> first_name, last_name, email, phone, message, status, created_at
Invoice :
id -> #reservation_id, invoice_number, amount, tax_amount, total_amount, invoice_date, due_date,
status, pdf_path
Media :
id -> file_name, file_path, file_type, file_size, created_at
Notification :
id -> #user_id, title, message, is_read, notification_type, created_at
Payement :
id -> #invoice_id, amount, payment_method, transaction_id, status, payment_date, last_four_digits
Reservation :

id -> #user_id, #room_id, check_in, check_out, status, total_price, special_requests, created_at,
updated_at
Review :
id -> #user_id, #room_id, #reservation_id, rating, comment, created_at
Room :
id -> #media_id, name, is_available, price, capacity, description, created_at, updated_at

RoomOption :
id -> #room_id, option_name, option_value, is_highlighted, additional_cost, created_at, updated_at
Users :
id -> first_name, last_name, email, phone, password, role, created_at, updated_at

Maquette de la page d’accueil :

Maquette de la liste des chambres :

Maquette formulaire de réservation :

Organisation du groupe

Le projet sera structuré comme suit :

ANNALIA TOM CLEMENT ANTOINE

Réalisation des
maquettes.

Développement
backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et
tableaux
interactifs.

Conception de
la base de
données (MCD,
création dans
PhpMyAdmin).

Développement
backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et
tableaux
interactifs.

Réalisation des
maquettes.

Conception de
la base de
données (MCD,
création dans
PhpMyAdmin).

Développement
backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et

Conception de
la base de
données (MCD,
création dans
PhpMyAdmin).

Développement
backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et
tableaux
interactifs.

tableaux
interactifs.

Technique utilisé :
Le projet repose sur une architecture MVC(Modele-vue-controleur) claire et
organisé:

Le Routeur (index.php) :
c’est lui qui regarde ce que l’utilisateur veut faire en fonction de (l’url) et
envoie la demande au bon contrôleur

Cette classe a plusieurs propriétés privées :

●​ $dependencyContainer : pour instancier les contrôleurs ou services
automatiquement​

●​ $pageMappings : une liste de toutes les routes du site (clé = nom de la
page ; valeur = [contrôleur, méthode, rôle requis])​

●​ $defaultPage, $errorPage, $unauthorizedPage : les pages de secours
(ex : 404, erreur, page par défaut…)

On retourve toutes les pages du site qui sont déclarées.

●​ Clé : ce qu’on met dans l’URL ?page=home​

●​ Valeur :

DefaultController::class : le contrôleur à utiliser

 'home' : la méthode dans ce contrôleur à exécuter

null ou 'admin' : le rôle requis pour accéder à cette page​
Par contre si la page n’existe pas il affiche une erreur 404,et si l’utilisateur n’a
pas le droit d’acces alors ca affiche une erreur 403

Cette fonction permet de voir dans la session dans la session PHP si
l’utilisateur est connecté, et retourne son rôle (ex : "admin", "client"...).

●​ Si $_SESSION['user_role'] existe → on le retourne (ex : 'admin')​

●​ Sinon → l’utilisateur n’est pas connecté, donc on retourne null

Plus le chiffre est grand, plus le rôle est "haut placé".​
 Donc :

●​ Un admin peut accéder à toutes les pages (3 ≥ tout)​

●​ Un staff peut accéder aux pages client (2 ≥ 1), mais pas admin​

●​ Un client ne peut accéder qu'aux pages client

Les controleurs :

​ Il traite la demande ,

●​ Reçoit la requête de l’utilisateur
●​ Appellent les modèles pour récupérer ou modifier les données
●​ Utilisent les entités pour structurer ces données
●​ Transmettent ensuite les résultats à une vue Twig

dans le projet nous avons différent Controleur

-CancellationController.php

-ContractMessageController.php

-DefaultController.php

-InvoiceController.php

-NotificationController.php

-PaymentController.php

-ReservationController.php

-ReviewController.php

-RoomController.php

-RoomOption.php

-UserController.php

exemple de Controller InvoicController.php qui permet d’afficher les
factures

On utilise :​

●​ Le modèle InvoiceModel pour gérer les factures en base de données
●​ Le modèle ReservationModel pour lier la facture à une réservation
●​ L'entité Invoice pour créer des objets facture
●​ Twig pour afficher les vues (pages HTML dynamiques)​

●​ Récupère toutes les factures en base de données
●​ Affiche la page listInvoices.html.twig avec les données

Cette méthode sert à voir toutes les factures existantes.

Vérification du formulaire

1)Si le formulaire a été soumis, on récupère les données envoyées (sécurisées
avec filter_input et FILTER_SANITIZE).

2)Données récupérées :

●​ reservation_id → réservation liée à la facture
●​ invoice_number → numéro de facture
●​ amount, tax_amount, total_amount → montants
●​ due_date → date d’échéance
●​ status → statut (ex: "en attente", "payée")
●​ pdf_path → lien vers la facture PDF

3)Ensuite , On crée un objet Invoice

On l’enregistre en base de données grâce à createInvoice()

4)On a un message de confirmation ou d’erreur.
5) affichage de la page du formulaire

Cette methode permet la modification d’une facture existante

1)​ Le formulaire a été soumis (requête POST)

 Les données sont récupérées :

●​ id → ID de la facture à modifier
●​ reservation_id → ID de la réservation associée
●​ invoice_number, amount, tax_amount, total_amount, due_date,

status, pdf_path → les champs du formulaire
2)​ On vérifie si la réservation existe avec getOneReservation()

La facture à modifier existe avec getOneInvoice()

3)​ On crée une nouvelle instance d’Invoice avec les nouvelles données :

On conserve

●​ L’ancienne date de création de la facture avec
$invoice->getInvoiceDate() (on ne la modifie pas)

●​ Tous les autres champs sont mis à jour

​

4)​ On sauvegarde la mise à jour et on redirige avec un message de
succes.

5)​ Si l’utilisateur arrive sur la page sans encore avoir validé le formulaire
●​ On récupère l’ID de la facture dans l’URL (?id=3)
●​ On récupère l’objet facture correspondant en base
●​ Si la facture n’existe pas → on redirige vers la liste avec un

message

 Sinon, on affiche le formulaire de modification

On envoie à la vue :

●​ La facture à modifier (invoice)
●​ Toutes les réservations (pour que l’utilisateur puisse en choisir une)

Afficher une seule facture, avec toutes ses informations (montants, date,
réservation associée, statut, etc.)

1)​ On récupère l’id de la facture dans l’URL
2)​ On demande au modèle InvoiceModel de retourner la facture avec l'ID

reçu. Si elle n'existe pas, $invoice vaudra false ou null.
3)​ Si la facture n’existe pas :
●​ On affiche un message d’erreur
●​ On redirige vers la liste des factures
4)​ Si la facture existe :
●​ On affiche la page Twig showInvoice.html.twig

●​ On lui envoie la variable invoice pour qu’elle affiche toutes les infos

Permettre à un utilisateur autorisé de supprimer une facture de la base de
donnée

1)​ On récupère l’ID depuis l’URL :

On sécurise l’entrée grâce à FILTER_SANITIZE_NUMBER_INT pour éviter
toute tentative d’injection ou de manipulation.

2)​ Si un ID valide est trouvé, on demande au modèle InvoiceModel de
supprimer la facture en base de données.

3)​ Une fois la suppression effectuée , on redirige l’utilisateur vers la liste
des factures.

Les Models :
Ils contiennent la logique d’accès à la base de données : requêtes SQL,
insertion, modification, suppression, lecture.

Chaque modèle est lié à une entité du même nom.

Notre projets contients différents models :

-CancellationModel.php

-ContactMessage.php

-InvoiceModel.php

-MediaModel.php

-NotificationModel.php

-PaymentModel.php

-ReservationModel.php

-ReviewModel.php

-RoomModel.php

-RoomOptionModel.php

-UserModel.php

exemple de Model pour InvoiceModel.php

1)​ Connexion à la base via PDO

 Le modèle reçoit une connexion PDO à la base de données via le
constructeur.

2)​ La méthode getAllInvoices() retourne un tableau d’objets invoice
3)​ Requête SQL : jointure entre Invoice et Reservation
●​ On sélectionne toutes les colonnes de la facture (i.*)
●​ On fait une jointure avec la table Reservation pour avoir toutes les

infos liées à la réservation de la facture
●​ On trie les factures par date (ORDER BY invoice_date DESC)
4)​ On exécute la requête SQL

On prépare un tableau $invoices pour stocker les objets​

5)​ On construit une réservation complète pour chaque facture :​

En créant des objets User et Room liés à cette réservation

Ensuite, on crée un objet Invoice complet en lui passant tous les
champs​

6)​ On retourne un tableau contenant toutes les factures du site, prêtes à
être utilisées dans un contrôleur ou une vue.

Cette méthode permet de récupérer une facture précise (grâce à son id) et
de la convertir en un objet Invoice complet avec :

●​ Ses propres infos (montant, statut, date, etc.)
●​ Et les infos de la réservation liée

1)​ On sélectionne toutes les colonnes de la facture (i.*)

Et on fait une jointure avec la table Reservation pour obtenir :

●​ Le client (user_id)
●​ La chambre (room_id)
●​ Les dates, le statut, le prix, etc.

On filtre avec WHERE i.id = :id → on veut une seule facture

2)​ On prépare la requête (prévention SQL injection)

On lie l’ID avec sécurité

On exécute la requête​

3)​ Si aucune facture ne correspond → on retourne null

Sinon → on a toutes les données nécessaires dans $row

4)​

On crée un objet Reservation avec :

●​ Son ID, ses dates, son statut, son prix, etc.
●​ Un objet User avec juste l’id
●​ Un objet Room de même, avec juste l’id

5)​ On retourne un objet Invoice complet avec :
●​ L’objet Reservation construit juste avant
●​ Le numéro, les montants, les dates, le statut, le PDF...​

Cette méthode permet permet d’ajouter une nouvelle facture à la base
de données à partir d’un objet Invoice.

1)​ Requete SQL qui va insérer une nouvelle facture dans la table
Invoice.

Elle contient tous les champs importants d'une facture.

2)​ On utilise prepare() pour sécuriser la requête et éviter les
injections SQL.

3)​ Pour chaque champ, on récupère la valeur depuis l'objet Invoice.
4)​ Si l’insertion réussit → retourne true

Sinon → retourne false

1)​ Requete SQL update ,Cette requête met à jour tous les champs d’une
facture précise identifiée par son id.

2)​ On prépare la requête SQL via PDO (sécurisé contre les injections SQL).
3)​ Le getId() est obligatoire pour identifier quelle facture doit être

modifiée .
4)​ true si la mise à jour a réussi

false sinon

​

​ ​ Supprimer une facture précise de la base de données, identifiée
par son id.

1)​ requete SQl qui va supprimer la facture dont l’ID correspond à la
valeur passé en paramètre.Elle utilise le paramètre :id pour sécuriser la
requete

2)​ On utilise PDO pour préparer la requête SQL (ce qui évite les injections
SQL).

3)​ On associe l’ID passé en paramètre à la variable :id dans la requête
SQL.

●​ PDO::PARAM_INT précise que c’est un entier (sécurité + clarté).

 4) Si elle réussit → retourne true

Si elle échoue → retourne false

Les entités :
Les entités représentent les objets métiers du projet. Chaque entité
correspond à une table dans la base de données.

Dans notre projet nous avons comme entités :

-Cancellation.php

-ContactMessage.php

-Invoice.php

-Medial.php

-Notification.php

-Payment.php

-Reservation.php

-Review.php

-Room.php

-RoomOption.php

1)​ Le constructeur Quand on crée une facture avec new Invoice(...), toutes
les données nécessaires sont envoyées à l’objet.​
 Cela garantit que l’objet est complet dès sa création.

Chaque champ de l'entité a :

●​ un getter (ex: getAmount()) → pour lire la valeur
●​ un setter (ex: setAmount()) → pour modifier la valeur​

 Cela permet de bien contrôler l'accès aux données.

Le Twig :
Les vues sont des fichiers Twig qui affichent les données à l’utilisateur. Elles
sont appelées par les contrôleurs après traitement.

Cela veut dire que cette page hérite d’un template de base (base.html.twig)
qui contient :

●​ le <head>​
les balises HTML principales

●​ la structure commune à toutes les pages​

Bloc title :

●​ Ce bloc complète le titre de la page
●​ {{ parent() }} garde le titre défini dans base.html.twig (ex. "Neptune

Hostel |") et ajoute "Inscription" à la suite

bloc content :

C’est ici que se trouve le contenu principal de la page. Tout ce qui est dans ce
bloc remplacera le bloc content de base.html.twig.

Le formulaire utilise la méthode POST

Il est traité par la route index.php?page=register il est utilisé par le
controleur UserController::register().

Methode Login dans UserController.php

1)​ Démarrer la session.

 Vérifie si une session PHP est active. Si non, il en démarre une.​
 Obligatoire pour utiliser $_SESSION.

2)​ Si l’utilisateur est déjà connecté, on le redirige

 ​ Si l’utilisateur est déjà connecté (il a un user_id en session), inutile de
lui montrer le formulaire : on le redirige vers sa page de profil.

3)​ Si le formulaire a été soumis (méthode POST)

 On vérifie si l’utilisateur vient de valider le formulaire de connexion

4)​ On récupère l’email et on le sécurise

On récupère le mot de passe brut (car on va le comparer avec
password_verify())

5)​ On vérifie que les champs ne sont pas vides
6)​ Chercher l’utilisateur dans la base

 On cherche un utilisateur avec cet email.​
 S’il existe, $user contient un objet User.

7)​ vérifier le mot de passe avec password_verify

 On vérifie que :

●​ L’utilisateur existe
●​ Le mot de passe saisi correspond au mot de passe haché en base
8)​ Connexion réussie : enregistrer en session

On stocke :

●​ L’ID de l’utilisateur
●​ Son nom complet
●​ Son rôle (admin, client…)
●​ Un message de bienvenue

Affichage du formulaire avec message éventuel

●​ On récupère les messages de session (s’il y en a)
●​ On les transmet à la vue Twig login.html.twig
●​ Puis on efface les messages de la session pour éviter qu’ils s’affichent

à nouveau après actualisation

1)Vider toutes les données de la session

 Cela supprime toutes les variables stockées dans $_SESSION :

2) Supprimer le cookie de session (si utilisé)

 Cela supprime le cookie PHP qui contient l’ID de session dans le
navigateur.​
 ​ Nécessaire pour que la déconnexion soit vraiment complète,
même côté client.

​ 3) Détruire la session sur le serveur

 Termine la session PHP sur le serveur.​
​ C’est la vraie déconnexion serveur.

4) Redirection vers la page d’accueil

L’utilisateur est redirigé automatiquement vers la page d’accueil (ou
toute autre page publique).

Methode Registration dans UsercController.php

Elle permet à un nouvel utilisateur de s’inscrire sur ton site en créant un
compte.

1)On vérifie si l’utilisateur vient de valider le formulaire d’inscription.
avec la methode POST

2) On récupère les données du formulaire et on les nettoie :

●​ filter_input pour éviter les attaques (XSS, injection…)
●​ Le mot de passe est lu brut pour être haché ensuite

3)Tous les champs obligatoires doivent être remplis, sinon → message
d’erreur.

4) Si les mots de passe ne sont pas identiques → erreur utilisateur.

5) Si un compte existe déjà avec cet email → l’utilisateur est invité à se
connecter au lieu de s’inscrire.

6) Hachage du mot de passe

On sécurise le mot de passe en le hachant.

1)Création d’un objet User

 On crée un objet utilisateur avec le rôle "client".

2) L’utilisateur est ajouté à la base de donnée

3) En cas de succès → redirection vers la page de connexion.

Sinon → message d’erreur affiché dans le formulaire.

Amélioration :

1)​ Possibilité de mettre plus d’image pour chaque chambre
2)​ mode de paiement réel et fonctionnel
3)​ Réglage de la notification
4)​ Ajout des avoirs

Problèmes rencontrés :

Au sein de notre projet nous avons rencontré quelques soucis comme la
refonte de la base de données plusieurs fois, car nous n'étions pas satisfait
de nos anciennes bases de données et avons donc choisi une version finale
de la base de données qui nous paraît complète.

Conclusion :

Ce projet nous a permis de travailler en groupe en développant un site web
pour un hôtel, en utilisant du HTML, du CSS et du PHP. Nous avons également
dû interagir avec une base de données. Grâce à ce projet, nous avons pu
acquérir de nouvelles compétences, notamment en maîtrisant différents
langages de programmation et en apprenant à gérer l'interaction avec la
bases de données. Cette expérience a renforcé notre capacité à collaborer
tout en développant des solutions concrètes dans un contexte réel.

Sources

●​ Documentation PHP officielle.
●​ Tutoriels pour la gestion des BDD MySQL avec PHP.
●​ Forums et communautés.
●​ Modèles Bootstrap gratuits.

	Feuille de route
	
	
	Contexte
	Problématique
	. Sous Problèmes
	1.​Gestion des chambres :
	2.​Gestion des clients :
	3.​Gestion des réservations
	4.​Fonctionnalités avancées
	-​Comment envoyer automatiquement un e-mail de confirmation après une réservation ?
	-​Comment générer des factures au format PDF pour les clients, incluant les détails de leur réservation ?
	5.​Sécurité et performance

	Brainstorming
	1. Gestion des chambres
	2. Gestion des clients
	4. Fonctionnalités avancées
	5. Sécurité et performance
	Description fonctionnelle
	Solutions proposées
	Justification des choix techniques
	Structure du Site
	1. Accueil (Page principale)
	2. Front-office (Espace client)
	2.1. Visualisation des chambres
	2.2. Réservation d’une chambre
	2.3. Gestion du profil
	2.4. Annulation de réservation

	3. Back-office (Espace administrateur)
	3.1. Gestion des chambres
	3.2. Gestion des clients
	3.3. Gestion des réservations

	4. Pages transversales
	Tâches et ordres des tâches:
	
	Pages liées aux chambres
	 chambres.html.twig → Afficher toutes les chambres​ addchambre.html.twig → Ajouter une chambre​ updatechambre.html.twig → Modifier une chambre
	 Pages liées aux clients
	 profil.html.twig → Afficher et modifier les informations du client​ register.html.twig → Page d'inscription​ login.html.twig → Page de connexion
	 Pages liées aux réservations
	 reservations.html.twig → Liste des réservations du client​ reservation_details.html.twig → Voir les détails d’une réservation​ addreservation.html.twig → Formulaire de réservation
	 Pages liées aux paiements
	 paiement.html.twig → Page pour entrer les infos de paiement​ facture.html.twig → Afficher / télécharger la facture
	 Pages liées aux avis
	 avis.html.twig → Laisser un avis sur une chambre​ liste_avis.html.twig → Voir tous les avis des clients
	 Autres pages
	 contact.html.twig → Page de contact​ administrateur.html.twig → Tableau de bord admin​ base.html.twig → Fichier de layout principal
	
	Résumé : Ordre des étapes
	 1 Finaliser le CRUD Chambre (test, affichage, boutons modifier/supprimer)​ 2️ CRUD Client (ajout, modification, suppression)​ 3️ Connexion & Sessions (Admin vs Client)​ 4️ CRUD Réservations (Ajout, annulation, affichage)​ 5️ Paiement (facultatif)​ 6️ Ajout des relations entre entités
	Maquette
	
	
	Organisation du groupe
	
	
	
	
	
	
	
	
	Vérification du formulaire
	1)Si le formulaire a été soumis, on récupère les données envoyées (sécurisées avec filter_input et FILTER_SANITIZE).
	2)Données récupérées :
	●​reservation_id → réservation liée à la facture
	●​invoice_number → numéro de facture
	●​amount, tax_amount, total_amount → montants
	●​due_date → date d’échéance
	●​status → statut (ex: "en attente", "payée")
	●​pdf_path → lien vers la facture PDF
	3)Ensuite , On crée un objet Invoice
	On l’enregistre en base de données grâce à createInvoice()
	
	Cette methode permet la modification d’une facture existante
	1)​Le formulaire a été soumis (requête POST)
	 Les données sont récupérées :
	3)​On crée une nouvelle instance d’Invoice avec les nouvelles données :
	On sécurise l’entrée grâce à FILTER_SANITIZE_NUMBER_INT pour éviter toute tentative d’injection ou de manipulation.
	2)​Si un ID valide est trouvé, on demande au modèle InvoiceModel de supprimer la facture en base de données.
	3)​Une fois la suppression effectuée , on redirige l’utilisateur vers la liste des factures.
	1)​Connexion à la base via PDO
	 Le modèle reçoit une connexion PDO à la base de données via le constructeur.
	3)​Requête SQL : jointure entre Invoice et Reservation
	1)​Requete SQL update ,Cette requête met à jour tous les champs d’une facture précise identifiée par son id.
	​​Supprimer une facture précise de la base de données, identifiée par son id.
	Bloc title :
	1)​ Démarrer la session.
	2)​Si l’utilisateur est déjà connecté, on le redirige
	3)​ Si le formulaire a été soumis (méthode POST)
	 On vérifie si l’utilisateur vient de valider le formulaire de connexion
	6)​ Chercher l’utilisateur dans la base
	 On cherche un utilisateur avec cet email.​ S’il existe, $user contient un objet User.
	7)​vérifier le mot de passe avec password_verify
	8)​Connexion réussie : enregistrer en session
	Affichage du formulaire avec message éventuel
	Sources

