Feuille de route

“Projet de groupe - Hotel Neptune”

Projet commencé le 16/01/2025 a remettre le 30/04 /2025

Eu epsi A wis

I'école d’'ingénierie I'école [tech]
informatique de I'expertise digitale
Participants : Conc. Expl. BDD - Premiére Année,

2025

Tom CLEMENT

Clément SALINGUE EPSI — Ecole de 'ingénierie

Annalia PRIEUR . .
Antoine BERTHE informatique, Arras

Projet encadré par :

Gregory BOUDRINGHIN

Contexte

Le projet porte sur la digitalisation des réservations de ’lHo6tel Neptune, un
établissement 3 étoiles situé a Arras, en développant un site web dynamique
en PHP associé a une base de données MySQL. Ce site comprendra deux
volets principaux : une interface pour les administrateurs permettant de
gérer les chambires, les clients et les réservations, et une interface pour les
clients, leur offrant la possibilité de rechercher, réserver et gérer leurs profils.
Le but est de remplacer les méthodes manuelles de gestion actuelles par une
solution numérique plus rapide, fiable et intuitive.

Problématique

Comment créer un site web qui facilite la gestion des chambres, clients et
réservations, tout en garantissant une expérience utilisateur fluide pour les
clients ?

. Sous Probléemes

1. Gestion des chambres:
- Comment organiser efficacement les informations des chambres
dans une base de données ?

- Comment permettre aux administrateurs d’ajouter, modifier et
supprimer des photos associées aux chambres ?

- Comment rendre les informations des chambres accessibles et
consultables par les clients selon des critéres comme les dates ou
le prix ?

2. Gestion des clients :
- Comment permettre aux clients de créer, modifier ou supprimer
leurs profils de maniére sécurisée ?
- Comment organiser les données des clients pour simplifier les
recherches et filtrages dans l'interface administrateur ?

3. Gestion des réservations
- Comment permettre aux clients de réserver une chambre de
maniére intuitive et sécurisée ?

- Comment gérer Pannulation des réservations a la fois pour les
clients et les administrateurs ?

- Comment afficher les réservations sous forme de tableau,
permettant une visualisation claire et organisée ?

4. Fonctionnalités avancées
- Comment envoyer automatiquement un e-mail de
confirmation aprés une réservation ?

- Comment générer des factures au format PDF pour les
clients, incluant les détails de leur réservation ?

5. Sécurité et performance
- Comment garantir la sécurité des données sensibles
(informations personnelles et bancaires) des utilisateurs ?

- Comment optimiser les performances des recherches dans
la base de données pour offrir des réponses rapides, méme
avec un grand nombre d’utilisateurs ?

Brainstorming

1. Gestion des chambres

ADMINISTRATION

CLIENT

Ajouter une chambre
(formulaire avec champs de
saisie).

Modifier et supprimer des
chambres existantes.

Gérer des photos associées a
chaque chambre (ajout,
modification, suppression).
Rechercher et trier les
chambres par critéres
(disponibilité, type, prix, etc.).

Visualiser les chambres
disponibles sous forme de liste
ou de tableau.

Consulter les détails d’'une
chambre (description, photos,
caractéristiques).

Filtrer les chambres selon des
criteres comme les dates, le
prix ou le nombre de lits.

2. Gestion des clients

ADMINISTRATION

CLIENT

Ajouter, modifier et supprimer
des profils de clients.
Rechercher et trier les clients
par nom, e-mail ou autres
critéres pertinents.

Inscription en ligne (création
d’un compte).

Modification et suppression
de leur propre profil.
Consultation de leurs
informations personnelles et
de leurs réservations.

3. Gestion des réservations

ADMINISTRATION CLIENT

- Visualiser toutes les - Réserver une chambre via un
réservations par chambre ou formulaire incluant les dates
par date. souhaitées.

- Annuler ou modifier une - Annuler une réservation en
réservation. ligne.

- Afficher les réservations sous - Simuler le paiement d’'une
forme de tableau avec filtrage réservation (formulaire avec
(par date ou chambre). champs pour carte bancaire

factice).

4. Fonctionnalités avancées

Envoi d’un e-mail de confirmation aux clients aprés chaque
réservation.

Génération d’une facture au format PDF pour les réservations
terminées (avec détails).

5. Sécurité et performance

Implémentation de requétes préparées pour sécuriser les acces a la
base de données.

Validation des données saisies par les utilisateurs (formulaires
sécurisés).

Gestion des sessions et authentification des utilisateurs
(administrateurs et clients).

Description fonctionnelle

Fonctionnalités principales :

Gestion des chambres (CRUD + gestion de photos associées).
Gestion des clients (CRUD).

Réservations (visualisation, filtrage, annulation).
Améliorations (e-mail de confirmation, factures PDF).

Solutions proposées

Afin de résoudre les probléemes identifiés, une solution compléte sera
développée.

Qui ? Le projet sera réalisé en groupe de 4 développeurs.

Quoi ? La création d’un site web permettant de gérer efficacement les
réservations.

Comment ? En développant des modules distincts pour chaque
fonctionnalité et en adoptant une méthodologie modulaire.

Ou ? Le développement se fera sur un environnement local, avec un
serveur de test PHP et MySQL.

Quand ? Le projet sera découpé en étapes hebdomadaires (détaillées
dans le découpage des taches).

Pourquoi ? Automatiser les taches de gestion pour gagner en
efficacité et en fiabilité.

Justification des choix techniques

Le choix de PHP et MySQL est dicté par leur simplicité et leur adaptabilité
pour développer des sites web dynamiques.

Structure du Site

1. Accueil (Page principale)

Contenu:
o Présentation de I’hétel (texte, images).
o Boutons de navigation vers les sections principales : chambres,
réservation, connexion.
o Informations de contact de I’hotel (adresse, téléphone, e-mail).

2. Front-office (Espace client)

2.1. Visualisation des chambres

e Page: Liste des chambres disponibles.
o Filtres: prix, dates, nombre de lits, options (balcon, vue).
o Détails d’'une chambre: description, galerie photo, prix par nuit,
équipements inclus.

2.2. Réservation d’une chambre

e Page : Formulaire de réservation.
o Champs: sélection de la chambre, dates d’arrivée et de départ,

informations personnelles.
o Vérification de la disponibilité avant validation.
o Confirmation et simulation de paiement (champs pour carte

bancaire).
2.3. Gestion du profil

e Page : Espace personnel.
o Modifier les informations du compte (nom, e-mail, mot de passe,

etfc.).
o Supprimer son compte.
o Visualiser 'historique des réservations.

2.4. Annulation de réservation

e Page: Liste des réservations du client.
o Option pour annuler une réservation.

3. Back-office (Espace administrateur)
3.1. Gestion des chambres

e Page: Liste des chambres.
o Ajouter une nouvelle chambre (formulaire).
o Modifier les informations d’une chambre existante.
o Supprimer une chambre.

3.2. Gestion des clients

e Page: Liste des clients.
o Ajouter un nouveau client.
o Modifier ou supprimer les informations d’un client.

3.3. Gestion des réservations

e Page: Liste des réservations.

Visualiser les réservations par chambre ou par date.

Filtrer les réservations selon des critéres.

Annuler une réservation pour un client.

Afficher les réservations sous forme de tableau par semaine.

o O O O

4. Pages transversales

e Connexion:
o Page commune pour les administrateurs et clients (choix du réle
aprés connexion).
e Contact:
o Formulaire de contact pour joindre ’hotel.
e Erreur 404:
o Page pour les liens invalides ou erreurs de navigation.

Tdaches et ordres des tdaches:

Pages liées aux chambres

chambres.html.twig — Afficher toutes les chambres
addchambre.html.twig — Ajouter une chambre
updatechambre.html.twig — Modifier une chambre

Pages liées aux clients

profil.html.twig — Afficher et modifier les informations du client
registerhtml.twig — Page d'inscription
login.html.twig — Page de connexion

Pages liées aux réservations

reservations.html.twig — Liste des réservations du client
reservation_details.html.twig — Voir les détails d’une réservation
addreservation.html.twig — Formulaire de réservation

Pages liées aux paiements

paiement.html.twig — Page pour entrer les infos de paiement
facture.html.twig — Afficher / télécharger la facture

Pages liées aux avis

avis.html.twig — Laisser un avis sur une chambre
liste_avis.html.twig — Voir tous les avis des clients

Autres pages

contact.html.twig — Page de contact
administrateur.html.twig — Tableau de bord admin
base.html.twig — Fichier de layout principal

Résumé : Ordre des étapes

1 Finaliser le CRUD Chambre (test, affichage, boutons modifier/supprimer)
2 CRUD Client (ajout, modification, suppression)

3 Connexion & Sessions (Admin vs Client)

4 CRUD Réservations (Ajout, annulation, affichage)

5 Paiement (facultatif)

6 Ajout des relations entre entités

Maquette
MCD:

Invoice
i tacture
raice_date
total_amount
amaunt
t2x_amount
due_date
ks mamber

Pour le MCD, I'explication va se dérouler en plusieurs points :

1) Paspect client : le client a donc la possibilité de laisser un avis, de recevoir des
notifications sur sa réservation mais aussi de pouvoir regarder les différents
types de réservation.

2) Lorsque le client a la possibilité de réserver, il faut qu'a travers cette
réservation il puisse avoir accés aux différentes chambres disponibles ainsi

que leurs options. De plus, si il peut réserver il doit payer et avoir accés a
facture.

3) Chaque chambre est liée aux avis donnés par le client mais aussi les médias
soit les images et mis en avant de la chambre.

4) Pour finir il reste une table contactMessage qui permet de stocker les
informations du footer du site.

MLD:

wsers
_wmer -
ContactMessage == = notification
i contact last_name
f2_name emait I
last_name B L
:",:,1 m-m-m type_norrhcarian
. ereated an
created at o
mara updated a2
| created at -
i mesias review
tike_name i awts ‘Cancellation
et rating id_Canceliation
e tyme cammene rebund_amount
i e creaved at rezson
created ar 1 e canceliation_date
- um_raam [num réservation
reom payment
Fo— [num_réservation o —
= T mayment_methad Invoice
& _availabic check_out tast_four_digns i tacture
o e e — o N
= I = 2t tatal amount
d;z::l':nn reated_at 2moune amount
P —1 im‘“"-‘“ mayment_ date 2 amount
created at B i jacture due_date
updated 2 e ser num _réservation woice_rumber
= rum_rom |t ation e =
14 mecias
aption
‘nam soom
id_agtian
T
id_aption
amtion_name
ammion_vakss
P —
2ddnianal oz
ereated at
updated ax

On peut donc remarquer que maintenant dans le mid on voit les clés étrangéres
dans les différents tables qui sont venu s’inclure grace au différentes relations
comme la relation peére fils mais aussi la relation maillet avec Papparition de la table
Option comportant la clé primaire de room et RoomOption.

Dictionnaire de données

Cancellation

Colonne Type Null Valeur par défaut Commentaires
id (Primaire) int(11) Non

reservation_id int(11) Non

reason text Oui NULL

refund_amount decimal(10,2) Oui NULL

cancellation_date timestamp Non current_timestamp()

cancelled_by_id int(11) Non

ContactMessage
D —————— . O O

id (Primaire) int(11) Non

varchar(50)

last_name

phone varchar(15) Oui NULL

status enum(‘new' ‘read’, 'replied’, 'archived")

Invoice

e T ————— s = i (S o e o
id (Primaire) int(11) Non

invoice_number varchar(20) Non

amount o demalin2) e
tax_amount decimal(10,2) Non

mLamout deomali02) N

current_timestamp()

invoice_date timestamp Non

status enum('pending’, 'paid', 'cancelled’, 'refunded’) Oui pending

Media
(Colonne . e MNal Valeurpardéfawt Commentaires

id (Primaire) int(11) Non
file_path varchar(255) Non

file_size int(11) Qui

Notification

id (Primaire) int(11)

varchar(100) Non

title

is_read tinyint(1) Oui 0
created_at timestamp Non current_timestamp()
Payment
D T ———— Ny N 3l 2 o \C OIS e
id (Primaire) int(11) Non

amount decimal(10,2) Non

transaction_id varchar(100) Qui

timestamp Non current, llmesiamp()

payment_date

Reservation

D ——————— D e OO i
id (Primaire) int(11) Non
room_id int(11) Non

check_out datetime Non

created_at |imeslamp

Review

Colonne Type Null Valeur par défaut Commentaires
id (Primaire) int(11) Non

user_id int(11) Non

room_id int(11) Non

reservation_id int(11) Non

rating decimal(2,1) Non

comment text Oui NULL

created_at timestamp Non current_timestamp()

Room

Colonne Type Null Valeur par défaut ‘Commentaires
id (Primaire) int(11) Non

name varchar(100) Non

is_available tinyint(1) Qui 1

price decimal(10,2) Non

capacity int(11) Non

description text Oui NULL

featured_image_id int(11) Qui NULL

created_at timestamp Non current_timestamp()

updated_at timestamp Non current_timestamp()

RoomOption

Colonne Type Null Valeur par défaut Commentaires
id (Primaire) int(11) Non

room_id int(11) Non

option_name varchar(100) Non

option_value text Oui NULL

is_highlighted tinyint(1) Oui 0

additional_cost decimal(10,2) Qui 0.00

created_at timestamp Nen current_timestamp()

updated_at timestamp Non current_timestamp()

User

Colonne Type Null Valeur par défaut Commentaires
id (Primaire) int(11) Non

first_name varchar(50) Non

last_name varchar(50) Non

email varchar(100) Non

phone varchar(19) Oui NULL

password varchar(255) Non

role enum('client’, "admin’, 'staff’) Non client

created_at timestamp Non current_timestamp()

updated_at timestamp Non current_timestamp()

dépendances fonctionnelles

Cancellation :

id -> #reservation_id, reason, refund_amount, cancellation_date, cancelled_by id
ContactMessage :

id -> first_name, last_name, email, phone, message, status, created_at

Invoice:

id -> #reservation_id, invoice_number, amount, tax_amount, total_amount, invoice_date, due_date,
status, pdf_path

Media :

id -> file_name, file_path, file_type, file_size, created_at

Notification :

id -> #user _id, title, message, is_read, notification_type, created_at

Payement :

id -> #invoice_id, amount, payment_method, transaction_id, status, payment_date, last_four_digits
Reservation :

id -> #user_id, #room_id, check_in, check_out, status, total_price, special_requests, created_at,
updated_at

Review :

id -> #user_id, #room_id, #reservation_id, rating, comment, created_at

Room :

id -> #media_id, name, is_available, price, capacity, description, created_at, updated_at

RoomOption:

id -> #room_id, option_name, option_value, is_highlighted, additional_cost, created_at, updated_at
Users:

id -> first_name, last_name, email, phone, password, role, created_at, updated_at

Maquette de la page d’accueil :

.Lgﬁ'mt
Réserver S

Biervernus
= Neptune Hotel

Découvres nos chambres

/. Mﬂ@m

L'Hotel Meptune vous invite & découvrir un havre de sérénite alliant confort, élégance et
senvice personnalisé, Que vous sovez en vovage d'affaires ou en guéte de détents, notra
atabliszement vous propose des chambres spacieuses et chaleureuserment décorées, dotées
de toutes les commedités modernes.

Profitez de notre atmosphére conviviale et aissez-vous seduire par notre emplacerment
privilégié & proximité des principales attractions de la région. Chagque séjour a I'Hatel
Meptune est une expérience unigue ol bien-&tre et hospitalité se rencontrent.

Mo Prenom
) !
HOTEL NERTLUNE ?lf
Q 2 RLE CUOEFOT Tel Ermsil
E2ED ARFAS
FRAEMNCE
%, 05 0300 00 00
Message

Errvoye—

Memioes | e - Corcioos gerd-sns bt

Maquette de la liste des chambres :

Diétail de la chambng

E Douiblas -[]l Chambire bMars
w58

—
-

Dhétail de la chambre

Charnbire
B copacité:2 Satume

#ry

2

Diétail de la chambra

E Doublas -[]l Chambre Mars
i

—
-

Drétail de la chambre

Chambra
B copacité: 2 Satume

L]

o
-

M Fremica
X
HATEL NEFTUNE
= FUE DU DESOT Tel Ermamil
BE120 MMM
FRATCE
OE 00 00O 00 oo
Message

Ermasny s
e AR et e A e Rt

Maquette formulaire de réservation :

Formulaire de reservation

Mom complet

Nom Premom

Mumerg de tél: Heures/mimubes

e

Arrivée; date-heures

MM - DD - YYYY
Départ: dates-heures
MM - DD - YYYY
Options
Mombres d'adultes Mombres d'enfants

Organisation du groupe

Le projet sera structuré comme suit :

ANNALIA

TOM

CLEMENT

ANTOINE

Réalisation des
maquettes.

Développement

backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et
tableaux
interactifs.

Conception de
la base de
données (MCD,
création dans
PhpMyAdmin).

Développement

backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et
tableaux
interactifs.

Réalisation des
maquettes.

Conception de
la base de
données (MCD,
création dans
PhpMyAdmin).

Développement
backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et

Conception de
la base de
données (MCD,
création dans
PhpMyAdmin).

Développement
backend
(gestion des
chambres,
clients et
réservations).

Création du
frontend
(HTML/CSS)
avec
formulaires et
tableaux
interactifs.

tableaux
interactifs.

Technique utilisé :

Le projet repose sur une architecture MVC(Modele-vue-controleur) claire et
organisé:

Le Routeur (index.php) :

c’est lui qui regarde ce que l'utilisateur veut faire en fonction de ('url) et
envoie la demande au bon controleur

ate $dependencyContainer;
= $pageMappings;
= fdefaultPage;

= $errorPage;

= funauthorizedPage;

Cette classe a plusieurs propriétés privées :

e $dependencyContainer : pour instancier les contréleurs ou services
automatiquement

e $pageMappings : une liste de toutes les routes du site (clé = nom de la
page ; valeur = [controleur, méthode, réle requis])

o $defaultPage, $errorPage, $unauthorizedPage : les pages de secours
(ex : 404, erreur, page par défaut...)

faultPage
rerrorPage =

runauthorizedPa

On retourve toutes les pages du site qui sont déclarées.

e Clé: ce quon met dans 'URL ?page=home

e Valeur:
DefaultController:class : le contréleur a utiliser
, . . - R .
home' : la méthode dans ce controleur a exécuter

null ou 'admin’: le role requis pour accéder a cette page
Par contre si la page n’existe pas il affiche une erreur 404 et si I'utilisateur n’a
pas le droit d’acces alors ca affiche une erreur 403

getUserRole(): ?

iscet(% SESSION['
return § SESSION[‘u

hasPermission(? fuserRole, $requiredRole):

if (!isset($roleHierarchy[$userRole])

return

return $roleHierarchy|[$userRole] »*= $roleHierarchy|$requiredRole];

Cette fonction permet de voir dans la session dans la session PHP si
'utilisateur est connecté, et retourne son role (ex : "admin”, "client"...).

e Si$_SESSION['user_role'] existe — on le retourne (ex : '‘admin’)

e Sinon — l'utilisateur n’est pas connecté, donc on retourne null

Plus le chiffre est grand, plus le réle est "haut placé”.
Donc:

e Un admin peut accéder a toutes les pages (3 = tout)
e Un staff peut accéder aux pages client (2 = 1), mais pas admin

e Un client ne peut accéder qu'aux pages client

Les controleurs:

Il traite la demande ,

Recoit la requéte de l'utilisateur

Appellent les modéles pour récupérer ou modifier les données
Utilisent les entités pour structurer ces données

Transmettent ensuite les résultats a une vue Twig

dans le projet nous avons différent Controleur
-CancellationController.php
-ContractMessageController.php
-DefaultController.php
-InvoiceController.php
-NotificationController.php
-PaymentController.php
-ReservationController.php
-ReviewController.php
-RoomController.php
-RoomOption.php

-UserController.php

exemple de Controller InvoicController.php qui permet d’afficher les
factures

MyApp\Mode1\I

MyAppA\Entity
MyApphServic

On utilise :

Le modéle InvoiceModel pour gérer les factures en base de données
Le modele ReservationModel pour lier la facture a une réservation
L'entité Invoice pour créer des objets facture

Twig pour afficher les vues (pages HTML dynamiques)

listInvoices

finvoices -»invoiceModel etAllInvoices
echo i render(invo

.
¥

> $involces

1;

e Récupére toutes les factures en base de données
e Affiche la page listInvoices.html.twig avec les données

Cette méthode sert a voir toutes les factures existantes.

addInvoice

#reservations = -rreservationModel->getAllReservations();

"y FILTER SANITIZE NUMBER INT);
FILTER_SANITIZE_STRING);
MBER_FLOAT, FILTER FLAG ALLOW FRACTION);
", FILTER_SANITIZE NUMBER_FLOAT, FILTER_FLAG ALLOW_FRACTION);
, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG ALLOW_FRACTION);

%P
$
= filter input(INPUT_POST, th', FILTER SANITIZE STRING);

ion id &% $im : number &% f$amount && $tax amount 88 $total amount && $due date) {
ionModel->getOneReservation $reservation id);

5 % invoice_number, $amount, $tax amount, %total amount, '', $due date, $status, $pdf path);

eateInvoice(il

Vérification du formulaire

1)Si le formulaire a été soumis, on récupére les données envoyées (sécurisées
avec filter_input et FILTER_SANITIZE).

2)Données récupérées :

reservation_id — réservation liée a la facture
invoice_number — numéro de facture

amount, tax_amount, total_amount — montants
due_date — date d’échéance

status — statut (ex: "en attente”, "payée”)
pdf_path — lien vers la facture PDF

3)Ensuite , On crée un objet Invoice

On P’'enregistre en base de données grdce a createlInvoice()

4)On a un message de confirmation ou d’erreur.
5) affichage de la page du formulaire

updateInvoice()
$reservations = - ionModel - >getAllReservations();
NUMBER_INT);
B ter_inpi 5 FILTER_SANITIZE_NUMBER_INT);
 number = filter inp FILTER S/ E_STRING);
1t = filter_input{INPUT_POS . . NUMBER_FLOAT, FILTER_FLAG ALLOW FRACTION);

unt = filter input(INPUT_POST FILTER SANITIZE NWUMBER FLOAT, FILTER FLAG ALLOW FRACTION);

nt’', FILTER_SANITIZE NUMBER _FLOAT, FILTER FLAG ALLOW FRACTION);

ath', FILTER_SANITIZE STRING);

J$reservation_id);

n, $invoice number, $amount, $tax amount, $total amount, $invoice->getInvoiceDate(), $due date, $status, $pdf path);

filter_input(ll GET, FILTER_SANITIZE_NUMBER_INT);
ce = -»in eInvoice(1$id);

Cette methode permet la modification d’'une facture existante

1) Le formulaire a été soumis (requéte POST)

Les données sont récupérées :

e id — ID de la facture a modifier

e reservation_id — ID de la réservation associée

e invoice_number, amount, tax_amount, total_amount, due_date,
status, pdf_path — les champs du formulaire

2) On vérifie si la réservation existe avec getOneReservation()
La facture a modifier existe avec getOnelnvoice()

3) On crée une nouvelle instance d’Invoice avec les nouvelles données :

On conserve

e L’ancienne date de création de la facture avec
$invoice->getInvoiceDate() (on ne la modifie pas)
e Tous les autres champs sont mis & jour

4) On sauvegarde la mise a jour et on redirige avec un message de
succes.

5) Sil'utilisateur arrive sur la page sans encore avoir validé le formulaire
e On récupére I'ID de la facture dans P'URL (?id=3)
e On recupeére 'objet facture correspondant en base
e Sila facture n’existe pas — on redirige vers la liste avec un
message

Sinon, on affiche le formulaire de modification
On envoie a la vue :

e La facture a modifier (invoice)
e Toutes les réservations (pour que l'utilisateur puisse en choisir une)
chowInvoice()

$id = filter input(INPUT GET, 'id', FILTER SANITIZE NUMBER_INT);
finvoice -rinvoiceModel - >getOneInvoice((Ypid) ;

header (" Loc

e.html.twig", [

Afficher une seule facture, avec toutes ses informations (montants, date,
réservation associée, statut, etc.)

1) On récupére I'id de la facture dans PURL

2) On demande au modeéle InvoiceModel de retourner la facture avec I'ID
recu. Si elle n'existe pas, $invoice vaudra false ou null.

3) Sila facture n’existe pas:

e On affiche un message d’erreur

e Onredirige vers la liste des factures

4) Si la facture existe :

e On affiche la page Twig showInvoice.html.twig

e On lui envoie la variable invoice pour qu’elle affiche toutes les infos
nction deleteInvoice()
$id = filter input(INPUT GET, 'id', FILTER SANITIZE NUMBER INT);

if (%id
tthiz-»invoiceModel->deleteInvoice((int)$id);

header('Location: index.php?page=list-invoices' 4

Permettre a un utilisateur autorisé de supprimer une facture de la base de
donnée

1) On récupeére I'ID depuis 'URL :

On sécurise I'entrée grace a FILTER_SANITIZE_NUMBER_INT pour éviter
toute tentative d’injection ou de manipulation.

2) Siun ID valide est trouvé, on demande au modéle InvoiceModel de
supprimer la facture en base de données.

3) Une fois la suppression effectuée , on redirige 'utilisateur vers la liste
des factures.

Les Models :

Ils contiennent la logique d’accés a la base de données : requétes SQL,
insertion, modification, suppression, lecture.

Chaque modéle est lié a une entité du méme nom.
Notre projets contients différents models :
-CancellationModel.php

-ContactMessage.php

-InvoiceModel.php

-MediaModel.php

-NotificationModel.php

-PaymentModel.php
-ReservationModel.php
-ReviewModel.php
-RoomModel.php
-RoomOptionModel.php
-UserModel.php

exemple de Model pour InvoiceModel.php

__construct(PDO $db)

db = $db;

getAllInvoices():

1) Connexion a la base via PDO

Le modéle recgoit une connexion PDO a la base de données via le
constructeur.

2) La méthode getAllInvoices() retourne un tableau d’objets invoice

3) Requéte SQL : jointure entre Invoice et Reservation

e On sélectionne toutes les colonnes de la facture (i.*)

e On fait une jointure avec la table Reservation pour avoir toutes les
infos liées a la réservation de la facture

e On ftrie les factures par date (ORDER BY invoice_date DESC)

4) On exécute la requéte SQL

On prépare un tableau $invoices pour stocker les objets

5) On construit une réservation compléte pour chaque facture :
En créant des objets User et Room liés a cette réservation
Ensuite, on crée un objet Invoice complet en lui passant tous les

champs

6) On retourne un tableau contenant toutes les factures du site, prétes a
étre utilisées dans un contréleur ou une vue.

getOneInvoice $id): ?Invoice

Cette méthode permet de récupérer une facture précise (grace a son id) et
de la convertir en un objet Invoice complet avec:

e Ses propres infos (montant, statut, date, etc.)
e Etles infos de la réservation liée

1) On sélectionne toutes les colonnes de la facture (i.*)
Et on fait une jointure avec la table Reservation pour obtenir :

e Leclient (user_id)
e La chambre (room_.id)
e Les dates, le statut, le prix, etc.

On filtre avec WHERE i.id =:id — on veut une seule facture
2) On prépare la requéte (prévention SQL injection)
On lie 'ID avec sécurité

On exécute la requéte

3) Si aucune facture ne correspond — on retourne null
Sinon — on a toutes les données nécessaires dans $row
4)
On crée un objet Reservation avec :

e Son ID, ses dates, son statut, son prix, etc.
e Un objet User avec juste I'id
e Un objet Room de méme, avec juste I'id

5) On retourne un objet Invoice complet avec:
e Lobjet Reservation construit juste avant
e Le numéro, les montants, les dates, le statut, le PDF...

bstmt =
Lstmt->bindValue
hstmt-

s tmrt-

s tmrt-

hstmt-

b stmt-»bindValue
->bindValue

Cette méthode permet permet d’ajouter une nouvelle facture a la base
de données a partir d’un objet Invoice.

1) Requete SQL qui va insérer une nouvelle facture dans la table
Invoice.

Elle contient tous les champs importants d'une facture.

2) On utilise prepare() pour sécuriser la requéte et éviter les
injections SQL.

3) Pour chaque champ, on récupére la valeur depuis I'objet Invoice.

4) Sil’insertion réussit — retourne true

Sinon — retourne false

updateInvoice(In
bstmt =

L stmt->bindValue
bt

s tmi-
bt
bt
s tmi-

1) Requete SQL update ,Cette requéte met a jour tous les champs d’une
facture précise identifiée par son id.

2) On prépare la requéte SQL via PDO (sécurisé contre les injections SQL).

3) Le getId() est obligatoire pour identifier quelle facture doit étre
modifiée .

4) true si la mise a jour a réussi
false sinon

Supprimer une facture précise de la base de données, identifiée
par son id.

1) requete SQI qui va supprimer la facture dont 'ID correspond a la
valeur passé en parameétre.Elle utilise le paramétre :id pour sécuriser la
requete

2) On utilise PDO pour préparer la requéte SQL (ce qui évite les injections
SQL).

3) On associe I'ID passé en parametre a la variable :id dans la requéte
SQL.

e PDO:PARAM_INT précise que c’est un entier (sécurité + clarté).

4) Si elle réussit — retourne true

Si elle échoue — retourne false

Les entités :

Les entités représentent les objets métiers du projet. Chaque entité
correspond a une table dans la base de données.

Dans notre projet nous avons comme entités :
-Cancellation.php

-ContactMessage.php

-Invoice.php

-Medial.php

-Notification.php

-Payment.php

-Reservation.php
-Review.php

-Room.php

-RoomOption.php

1) Le constructeur Quand on crée une facture avec new Invoice(...), toutes
les données nécessaires sont envoyées a 'objet.
Cela garantit que 'objet est complet dés sa création.

ion = $reservation; }

->invoice_nu

soiceNumber $i number) : { = ice number = $invoice number; }

getAmount(): { retur ->amount; }
setAmount $amount)) : -ramount = $amount; }

Chaque champ de l'entité a:

e un getter (ex: getAmount()) — pour lire la valeur
e un setter (ex: setAmount()) — pour modifier la valeur
Cela permet de bien contréler 'accés aux données.

Le Twig :

Les vues sont des fichiers Twig qui affichent les données a l'utilisateur. Elles
sont appelées par les controleurs apres traitement.

html.t %}

{#% block title %} {{ parent() }} Inscription {% endbl

{% block css %} {{ parent() }} rel="s

"home-1link">Accueil

Inscription

Cela veut dire que cette page hérite d’'un template de base (base.html.twig)
qui contient :

o |e <head>
les balises HTML principales
e la structure commune a toutes les pages

Bloc title :

e Ce bloc complete le titre de la page
e {{ parent() }} garde le titre défini dans base.html.twig (ex. "Neptune
Hostel |") et ajoute "Inscription” a la suite

bloc content :

C’est ici que se trouve le contenu principal de la page. Tout ce qui est dans ce
bloc remplacera le bloc content de base.html.twig.

om" name="last name" required

1">Prénom
" type="text" placeholder="Sais DI " name="first_name"” required

Numéro de téléphone
type="text" placeholder=

">Email
type="email"” placeholder="Saisir

Mot de passe

" type=' * placeholder 3 e mo : ‘ required

Confirmation de mot de passe

"

type="pas 'd" placeholder="Confi

" class= bmit-button”>S inscrire

Le formulaire utilise la méthode POST

Il est traité par la route index.php?page=register il est utilisé par le
controleur UserController:register().

Methode Login dans UserController.php

login
session status() === PHP_SESSION NONE

session_start();

isset($ SESSION[
header('L -
it();

$ SERVER['REQUEST METH

$email = filter input(INPUT POST, 'email’, FILTER SANITIZE EMAIL);
$password = $_POST['p 1

if (lempty($email) && !empty($password)) {
$user = ->userModel->getUserByEmail ($email);

if ($user I== && password verify($password, puser->getPassword())) {
$ SESSION['user_ic = $user->getId();
SESSION "N = fuser->getFirstName
SESSION['user role = $user->getRole();
. SESSTION| "me "Bi we, " . $user->getFirstName
. SESSION

1) Démarrer la session.

. $user->getLastName

Vérifie si une session PHP est active. Si non, il en démarre une.
Obligatoire pour utiliser $_SESSION.

2) Si l'utilisateur est déja connecté, on le redirige

Si 'utilisateur est déja connecté (il a un user_id en session), inutile de
lui montrer le formulaire : on le redirige vers sa page de profil.

3) Sile formulaire a été soumis (méthode POST)
On vérifie si I'utilisateur vient de valider le formulaire de connexion

4) On récupeére 'email et on le sécurise

On récupeére le mot de passe brut (car on va le comparer avec
password_verify())

5) On vérifie que les champs ne sont pas vides
6) Chercher l'utilisateur dans la base

On cherche un utilisateur avec cet email.
S’il existe, $user contient un objet User.

7) vérifier le mot de passe avec password_verify
On vérifie que :

e L'utilisateur existe
e Le mot de passe saisi correspond au mot de passe haché en base
8) Connexion réussie : enregistrer en session

On stocke :

L'ID de lutilisateur

Son hom complet

Son réle (admin, client...)
Un message de bienvenue

ob_clean
header

 SESSION[* e invalide.’;
$ SESSION|[® :

_SESSION["me e'] =" ez ner a la fois 1'email et le mot de p
SION["succ]

$message = $ SESSION["mes
$success SESSION[" suc
unset($ SESSION[‘me 1, $ SESSION| 'su D;

echo ->twig->render('userControl gin.html.twig®, [
. : > [
=> $message,
=» $success

Affichage du formulaire avec message éventuel

e On récupére les messages de session (s’il y en a)

e On les transmet a la vue Twig login.html. twig

e Puis on efface les messages de la session pour éviter qu’ils s’affichent
a nouveau aprés actualisation

logout()

if (session_status() === PHP_SESSION NONE
session_start();

$ SESSION =

it (ini get('s 3
$params = session_ ie p: ;
setcookie(
session name(),

[
»

time() - 42000,
$params| ']
$params|[‘do
$params|
$params|

)H

session_destroy();

header(' Location: i

1)Vider toutes les données de la session
Cela supprime toutes les variables stockées dans $_SESSION :
2) Supprimer le cookie de session (si utilisé)

Cela supprime le cookie PHP qui contient 'ID de session dans le
navigateur.

Nécessaire pour que la déconnexion soit vraiment compléte,
méme coté client.

3) Détruire la session sur le serveur

Termine la session PHP sur le serveur.
C’est la vraie déconnexion serveur.

4) Redirection vers la page d’accueil

Lutilisateur est redirigé automatiquement vers la page d’accueil (ou
toute autre page publique).

Methode Registration dans UsercController.php

register()

if ($_SERVER['REQUEST METHOD'] === 'POST'
$firstName = filter input(INPUT_POST, 'fi e', FILTER SANITIZE STRING);
$lastname = filter_input(INPUT_POST, L FILTER_SANITIZE_STRING);
$email = filter input(INPUT_POST, ‘enm , FILTER SANITIZE EMAIL);
$phone = filter_input(INPUT_POST, ‘phone’, FILTER SANITIZE_ STRING);
$password = $ POST['
$confirmPassword = $ |

if (lempty($firstname) && lempty($lastName) && lempty($email) && !empty($password)) {

if ($password confirmPa d
$ SESSTON a '
$_SESSION

$existingUser = ->userModel->getUserByEmail($email);

if ($existingUser
$ SESSION["me > euillez connecter.";
$ SESSTON[" "] 5
else

$hashedPassword = password_hash($password, PASSWORD_DEFAULT);

Elle permet a un nouvel utilisateur de s’inscrire sur ton site en créant un
compte.

1)On vérifie si 'utilisateur vient de valider le formulaire d’inscription.
avec la methode POST

2) On récupére les données du formulaire et on les nettoie :

filter_input pour éviter les attaques (XSS, injection...)
Le mot de passe est lu brut pour étre haché ensuite

3)Tous les champs obligatoires doivent étre remplis, sinon — message
d’erreur.

4) Si les mots de passe ne sont pas identiques — erreur utilisateur.

5) Si un compte existe déja avec cet email — l'utilisateur est invité a se
connecter au lieu de s’inscrire.

6) Hachage du mot de passe

On sécurise le mot de passe en le hachant.

$_SESSION["
$_SESSION["
header(

ors de 1\'inscription.';

$_SESSION['m
$_SESSIOI

1
3

echo $this->twig->render(u roller/register.html.twig', [‘session’ => $_SESSION 2? [11);

1)Création d’un objet User

On crée un objet utilisateur avec le role "client”.

2) Lutilisateur est ajouté a la base de donnée

3) En cas de succés — redirection vers la page de connexion.

Sinon — message d’erreur affiché dans le formulaire.

Amélioration :

1) Possibilité de mettre plus d’image pour chaque chambre
2) mode de paiement réel et fonctionnel

3) Réglage de la notification

4) Ajout des avoirs

Problémes rencontrés :

Au sein de notre projet nous avons rencontré quelques soucis comme la
refonte de la base de données plusieurs fois, car nous n'étions pas satisfait
de nos anciennes bases de données et avons donc choisi une version finale
de la base de données qui nous parait compléte.

Conclusion:

Ce projet nous a permis de travailler en groupe en développant un site web
pour un hétel, en utilisant du HTML, du CSS et du PHP. Nous avons également
di interagir avec une base de données. Grdce a ce projet, nous avons pu
acquérir de nouvelles compétences, notamment en maitrisant différents
langages de programmation et en apprenant a gérer l'interaction avec la
bases de données. Cette expérience a renforcé notre capacité a collaborer
tout en développant des solutions concretes dans un contexte réel.

Sources

Documentation PHP officielle.

Tutoriels pour la gestion des BDD MySQL avec PHP.
Forums et communautés.

Modeéles Bootstrap gratuits.

	Feuille de route
	
	
	Contexte
	Problématique
	. Sous Problèmes
	1.​Gestion des chambres :
	2.​Gestion des clients :
	3.​Gestion des réservations
	4.​Fonctionnalités avancées
	-​Comment envoyer automatiquement un e-mail de confirmation après une réservation ?
	-​Comment générer des factures au format PDF pour les clients, incluant les détails de leur réservation ?
	5.​Sécurité et performance

	Brainstorming
	1. Gestion des chambres
	2. Gestion des clients
	4. Fonctionnalités avancées
	5. Sécurité et performance
	Description fonctionnelle
	Solutions proposées
	Justification des choix techniques
	Structure du Site
	1. Accueil (Page principale)
	2. Front-office (Espace client)
	2.1. Visualisation des chambres
	2.2. Réservation d’une chambre
	2.3. Gestion du profil
	2.4. Annulation de réservation

	3. Back-office (Espace administrateur)
	3.1. Gestion des chambres
	3.2. Gestion des clients
	3.3. Gestion des réservations

	4. Pages transversales
	Tâches et ordres des tâches:
	
	Pages liées aux chambres
	 chambres.html.twig → Afficher toutes les chambres​ addchambre.html.twig → Ajouter une chambre​ updatechambre.html.twig → Modifier une chambre
	 Pages liées aux clients
	 profil.html.twig → Afficher et modifier les informations du client​ register.html.twig → Page d'inscription​ login.html.twig → Page de connexion
	 Pages liées aux réservations
	 reservations.html.twig → Liste des réservations du client​ reservation_details.html.twig → Voir les détails d’une réservation​ addreservation.html.twig → Formulaire de réservation
	 Pages liées aux paiements
	 paiement.html.twig → Page pour entrer les infos de paiement​ facture.html.twig → Afficher / télécharger la facture
	 Pages liées aux avis
	 avis.html.twig → Laisser un avis sur une chambre​ liste_avis.html.twig → Voir tous les avis des clients
	 Autres pages
	 contact.html.twig → Page de contact​ administrateur.html.twig → Tableau de bord admin​ base.html.twig → Fichier de layout principal
	
	Résumé : Ordre des étapes
	 1 Finaliser le CRUD Chambre (test, affichage, boutons modifier/supprimer)​ 2️ CRUD Client (ajout, modification, suppression)​ 3️ Connexion & Sessions (Admin vs Client)​ 4️ CRUD Réservations (Ajout, annulation, affichage)​ 5️ Paiement (facultatif)​ 6️ Ajout des relations entre entités
	Maquette
	
	
	Organisation du groupe
	
	
	
	
	
	
	
	
	Vérification du formulaire
	1)Si le formulaire a été soumis, on récupère les données envoyées (sécurisées avec filter_input et FILTER_SANITIZE).
	2)Données récupérées :
	●​reservation_id → réservation liée à la facture
	●​invoice_number → numéro de facture
	●​amount, tax_amount, total_amount → montants
	●​due_date → date d’échéance
	●​status → statut (ex: "en attente", "payée")
	●​pdf_path → lien vers la facture PDF
	3)Ensuite , On crée un objet Invoice
	On l’enregistre en base de données grâce à createInvoice()
	
	Cette methode permet la modification d’une facture existante
	1)​Le formulaire a été soumis (requête POST)
	 Les données sont récupérées :
	3)​On crée une nouvelle instance d’Invoice avec les nouvelles données :
	On sécurise l’entrée grâce à FILTER_SANITIZE_NUMBER_INT pour éviter toute tentative d’injection ou de manipulation.
	2)​Si un ID valide est trouvé, on demande au modèle InvoiceModel de supprimer la facture en base de données.
	3)​Une fois la suppression effectuée , on redirige l’utilisateur vers la liste des factures.
	1)​Connexion à la base via PDO
	 Le modèle reçoit une connexion PDO à la base de données via le constructeur.
	3)​Requête SQL : jointure entre Invoice et Reservation
	1)​Requete SQL update ,Cette requête met à jour tous les champs d’une facture précise identifiée par son id.
	​​Supprimer une facture précise de la base de données, identifiée par son id.
	Bloc title :
	1)​ Démarrer la session.
	2)​Si l’utilisateur est déjà connecté, on le redirige
	3)​ Si le formulaire a été soumis (méthode POST)
	 On vérifie si l’utilisateur vient de valider le formulaire de connexion
	6)​ Chercher l’utilisateur dans la base
	 On cherche un utilisateur avec cet email.​ S’il existe, $user contient un objet User.
	7)​vérifier le mot de passe avec password_verify
	8)​Connexion réussie : enregistrer en session
	Affichage du formulaire avec message éventuel
	Sources

