
Projet MSPR — Voyage
“Projet de groupe : Préparation et présentation d’une

application de voyage”

Participants :

Tom CLEMENT
William COLLE
Clément SALINGUE

Projet encadré par :

GABER Khalid

Préparation et présentation d’une
application de voyage - Première
Année, 2025

EPSI — Ecole de l’ingénierie
informatique, Arras

Table des matières

1. Context...03

2. Question...03

1.1. MCD...03

1.2. SQL... 04

3. Explication des spécifications techniques..09

2.1. Les Modèles (src/Model/)..11

2.2. Les Contrôleurs (src/Controller/) ...15

2.3. Le Routeur (src/Routing/) .. 23

2.4. Les Templates (templates/) ...24

4. Annexe..26

3.1.DICTIONNAIRE DE DONNÉE... 26

3.1.dépendance fonctionnelle..28

3.2. MLD ... 28

3.2. Conclusion..29

https://docs.google.com/document/d/1WTKwc_Ticpygm_R-H1IOoIuBjhSQuFOK0hiigkAG_cY/edit?tab=t.0#heading=h.cqokpakh4gew
https://docs.google.com/document/d/1WTKwc_Ticpygm_R-H1IOoIuBjhSQuFOK0hiigkAG_cY/edit?pli=1&tab=t.0#heading=h.cqokpakh4gew
https://docs.google.com/document/d/1WTKwc_Ticpygm_R-H1IOoIuBjhSQuFOK0hiigkAG_cY/edit?pli=1&tab=t.0#heading=h.cqokpakh4gew
https://docs.google.com/document/d/1WTKwc_Ticpygm_R-H1IOoIuBjhSQuFOK0hiigkAG_cY/edit?pli=1&tab=t.0#heading=h.cqokpakh4gew

Context :

En premier lieu nous devons réaliser une base de données en MCD grâce au logiciel
Looping puis un dictionnaire de données et les relations fonctionnelles.

En deuxième lieu on doit répondre à des questions de requête sql.

On souhaite développer une application en utilisant PHP qui permet aux clients de
s’enregistrer puis de se connecter ce qui va permettre de réserver leurs circuits. En parallèle
développer une partie administrateur avec une authentification dont seul lui peut avoir les
droits pour ajouter, supprimer, modifier un circuit, une étape, ect.

1)​MCD

On a créé ici nos 7 tables pour notre planning de voyages qui regroupe la table Admin qui
est liée à la table circuit.

Une table circuit qui gère le circuit de voyage, cette table est reliée à la réservations client
qui va réserver un circuit, et il est aussi lié à la table étape puisque l'étape du voyage
appartient à un ou plusieurs circuits.

On a ensuite la table Étape qui est relié la table circuite et la table LieuAvisiter puisque
chaque étape possède un ou plusieurs lieu à visiter

On ensuite justement cette table Lieu visiter lié à la table Étape

Ensuite nous avons la tables Reservations Client qui est lié à la table CIrcuit, la table CLient
qui renseigne les infos personnels du client et la table bénéficiaires si un client offre un
circuit de voyage

Remplissage des tables via les requêtes SQL :

2)​ Insérer les valeurs dans les tables

INSERT INTO Circuit_ (identifiant_circuit, descriptif_, villeDepart, paysDepart, villeArrivee,
paysArrivee, date_Depart, nbr_place_disponible, Duree, prixInscription)
VALUES (7, 'Découverte de l\'Atlas et des villages berbères', 'Casablanca','Maroc',
'Marrakech', 'Maroc', '2025-03-20', 50, '07:00:00', 250);

———

INSERT INTO LieuAvisiter_ (Nom_lieu, ville, pays, descriptif_, prixVisite)
VALUES ('Jardin Majorelle', 'Marrakech', 'Maroc', 'Un jardin botanique unique', 100);

———

INSERT INTO Client (identifiantClient, Nom, Prenom, date_naissance, identifiant, password)
VALUES (1, 'Doe', 'John', '1990-05-15', 'John_Doe', 'BigJohnDoe.456');

———

INSERT INTO Reservation_client (id_reservation, date_reservation, nbr_places_reservation,
identifiant_circuit, identifiantClient)
VALUES (1, '2025-03-01', '2', 7, 1);

———

INSERT INTO Beneficiaire (id_beneficiaire, nom, prenom)
VALUES (1, 'Smith', 'Anna');

———

INSERT INTO Etape (identifiant_circuit, ordre, date_etape_, duree, Nom_lieu, ville, pays)
VALUES (7, '1', '2025-03-20', '02:00:00', 'Jardin Majorelle', 'Marrakech', 'Maroc');

———

Requetes SQL

3)​

SELECT
 Circuit_.identifiant_circuit,
 Circuit_.descriptif_,
 Circuit_.villeDepart,
 Circuit_.villeArrivee,
 COUNT(Etape.ordre) AS nombre_etapes
FROM
 Circuit_
JOIN
 Etape ON Circuit_.identifiant_circuit = Etape.identifiant_circuit
WHERE
 Circuit_.identifiant_circuit = 7
GROUP BY
 Circuit_.identifiant_circuit, Circuit_.descriptif_, Circuit_.villeDepart, Circuit_.villeArrivee;

———————-—————————————————————————————————

4)​

DELETE FROM LieuAvisiter_
WHERE Nom_lieu = 'Jardin Majorelle'
AND ville = 'Marrakech'
AND pays = 'Maroc'
AND (Nom_lieu, ville, pays) NOT IN

5)​

SELECT

 Circuit_.prixInscription + SUM(CAST(LieuAvisiter_.prixVisite AS DECIMAL(15,2))) AS
prix_total

FROM

 Circuit_

JOIN

 Etape ON Circuit_.identifiant_circuit = Etape.identifiant_circuit

JOIN

 LieuAvisiter_ ON Etape.Nom_lieu = LieuAvisiter_.Nom_lieu

 AND Etape.ville = LieuAvisiter_.ville

 AND Etape.pays = LieuAvisiter_.pays

WHERE

 Circuit_.identifiant_circuit = 7

GROUP BY

 Circuit_.prixInscription;

———

6)​

SELECT
 Circuit_.identifiant_circuit,
 Circuit_.nbr_place_disponible + SUM(CASE
 WHEN LieuAvisiter_.prixVisite IS NOT NULL THEN CAST(LieuAvisiter_.prixVisite AS
DECIMAL(15,2))
 ELSE 0
 END) AS prix_total,
 Circuit_.date_Depart,
 Circuit_.Duree
FROM
 Circuit_
JOIN
 Etape ON Circuit_.identifiant_circuit = Etape.identifiant_circuit
JOIN
 LieuAvisiter_ ON Etape.Nom_lieu = LieuAvisiter_.Nom_lieu
 AND Etape.ville = LieuAvisiter_.ville
 AND Etape.pays = LieuAvisiter_.pays
WHERE
 Circuit_.date_Depart BETWEEN '2025-02-01' AND '2025-06-15' -- Plage de dates de
vacances
AND
 Circuit_.nbr_place_disponible >= 10 -- Nombre de places disponibles;

———

7)​

Avant la requete

 Après la requête

Procédure:

DELIMITER $$

CREATE PROCEDURE SupprimerEtape(

 IN circuit_id INT,

 IN ordre_etape INT

)

BEGIN

 DELETE FROM Etape

 WHERE identifiant_circuit = circuit_id

 AND ordre = ordre_etape;

 UPDATE Etape

 SET ordre = ordre - 1

 WHERE identifiant_circuit = circuit_id

 AND ordre > ordre_etape;

END$$

DELIMITER ;

appel procédure:

 CALL SupprimerEtape(7, 2);

———

8)​

INSERT INTO Reservation_client (id_reservation, date_reservation, nbr_places_reservation,
identifiant_circuit, identifiantClient)
VALUES (2, '2025-03-05', '3', 7, 1);

Explication des spécifications techniques

Notre projet suit une architecture MVC (Modèle-Vue-Contrôleur) avec
des CRUD pour chaque table coté admin .

1. Les Entités (src/Entity/)

Les entités représentent les tables de la base de données. Elles
définissent la structure des données et leurs relations.

Administrateur.php

Beneficiaire.php

Circuit.php

Client.php

DetailBeneficiaire.php

private ?int $idReservation; : Stocke l'ID de la réservation associée
(peut être null).

private ?int $idBeneficiaire; : Stocke l'ID du bénéficiaire associé
(peut être null).

private ReservationClient $reservationClient; : Référence à un
objet ReservationClient, qui représente la réservation liée.

private Beneficiaire $beneficiaire; : Référence à un objet
Beneficiaire, qui représente le bénéficiaire associé.

Ce constructeur est utilisé pour créer une nouvelle instance de
DetailBeneficiaire.

Il prend quatre paramètres :

1.​ $idReservation → L’ID de la réservation (peut être null).
2.​ $idBeneficiaire → L’ID du bénéficiaire (peut être null).
3.​ $reservationClient → Un objet ReservationClient

(obligatoire).
4.​ $beneficiaire → Un objet Beneficiaire (obligatoire).

Il assigne les valeurs aux propriétés privées de la classe.

getIdReservation() → Retourne l’ID de la réservation (ou null si non
défini).

setIdReservation() → Définit un nouvel ID pour la réservation.

 Etape.php

 LieuAvisiter.php

 ReservationClient.php

Explication du code dans entité :

2) Les Modèles (src/Model/)

Les modèles gèrent les interactions avec la base de données et
implémentent la logique de manipulation des données.

 AdministrateurModel.php

 BeneficiaireModel.php

 CircuitModel.php

 ClientModel.php

 DetailBeneficiaireModel.php

Ce fichier définit un modèle (Model) pour gérer les opérations liées à
l'entité DetailBeneficiaire. Il permet d'effectuer les opérations
CRUD (Create, Read, Delete) sur la table DetailBeneficiaire, qui
fait le lien entre une réservation (ReservationClient) et un
bénéficiaire (Beneficiaire).

use MyApp\Entity\ReservationClient; et use
MyApp\Entity\Beneficiaire;​
 → Importent les entités associées (ReservationClient pour les
réservations et Beneficiaire pour les bénéficiaires).

use PDO;​
 → Importe PDO pour permettre l'interaction avec la base de données.

Exécute une jointure SQL (INNER JOIN) pour récupérer les détails des
bénéficiaires avec leurs réservations associées.

$stmt = $this->db->query($sql); → Exécute la requête SQL.

Parcours des résultats (while) :

●​ Créer un objet ReservationClient en utilisant les données
récupérées.

●​ Créer un objet Beneficiaire.
●​ Ajoute un DetailBeneficiaire à $details[].

Retourne un tableau de DetailBeneficiaire.

●​ Sélectionne un seul DetailBeneficiaire en fonction de l'ID de
la réservation et de l'ID du bénéficiaire.

●​ Utilisation de prepare() et bindValue() → Protège contre les
injections SQL.

●​ Si aucune donnée n'est trouvée → Retourne null.
●​ Sinon → Crée et retourne un objet DetailBeneficiaire.

●​ Insère une nouvelle relation entre une réservation et un
bénéficiaire.

●​ Utilisation de prepare() et bindValue() pour éviter les
injections SQL.

●​ Retourne true si l'ajout est réussi, sinon false.

Supprime un lien entre un bénéficiaire et une réservation.

Utilisation de prepare() pour éviter les injections SQL.

Retourne true si la suppression réussit, sinon false.

 EtapeModel.php

 LieuAvisiterModel.php

 ReservationClientModel.php

 -Contiennent des méthodes pour interagir avec la base (ex : récupérer
un client, ajouter une réservation).

- Font appel aux entités pour obtenir ou sauvegarder des données.

 Permettent d’effectuer des requêtes spécifiques (ex : récupérer les
circuits d’un client).

3)Les Contrôleurs (src/Controller/)

Les contrôleurs gèrent la logique métier et répondent aux requêtes
HTTP.

AdministrateurController.php

 BeneficiaireController.php

 CircuitController.php

ClientController.php

 DefaultController.php

 ReservationClientController.php

Explication du code dans AdministrateurController.php

●​ Constructeur :

$twig est injecté pour gérer l’affichage avec Twig.

$dependencyContainer->get('AdministrateurModel') récupère
l'instance de AdministrateurModel depuis le conteneur de
dépendances.

Fonction listadministrateur

●​ Récupère tous les administrateurs via
$this->administrateurModel->getAllAdministrateurs().

●​ Affiche la vue Twig listAdministrateurs.html.twig en lui passant les
données.

Exécution :​
 Si un utilisateur accède à index.php?page=list-administrateurs, il verra
la liste des administrateurs.

- Vérifie si le formulaire a été soumis en POST.

- Récupère et sécurise les données avec filter_input().

-Hache le mot de passe avec password_hash().

– Vérifie si tous les champs sont remplis.

- Crée un nouvel administrateur (new Administrateur(...)).

- Appelle createAdministrateur() pour l’ajouter à la base.

- Redirige l’utilisateur vers la liste des administrateurs.

La fonction deleteAdministrateur :

 -Récupère l’ID depuis l’URL.

 -Supprime l’administrateur en appelant deleteAdministrateur().

 -Redirige l’utilisateur vers la liste après suppression.

La fonction Showadministrateur

-Récupère l’ID de l’administrateur.

-Charge ses détails via getOneAdministrateur().

-Affiche la vue Twig showAdministrateurDetails.html.twig.

La fonction registerAdmin

●​ Vérifie si la requête HTTP est une soumission de formulaire via
POST.

· Vérifie si les champs sont remplis.

· Si un champ est vide, un message d'erreur est stocké en session et
l'utilisateur est redirigé vers la page d'inscription.

 -Vérifie si l’identifiant est déjà utilisé en appelant la méthode
getAdministrateurByIdentifiant().

- Si un administrateur existe déjà avec cet identifiant, un message
d’erreur est affiché et l'utilisateur est redirigé.

-password_hash() est utilisé avec PASSWORD_BCRYPT pour
sécuriser le mot de passe avant de l'enregistrer en base de données.

-Crée un nouvel objet Administrateur avec les données sécurisées.

-Appelle createAdministrateur() pour insérer l'administrateur en base.

- Si l'insertion en base réussit, redirige vers la page de connexion.

- Sinon, affiche un message d’erreur.

-Vérifie que la requête HTTP utilisée pour accéder à la fonction est
bien une soumission de formulaire via POST.

filter_input(INPUT_POST, 'identifiant', FILTER_SANITIZE_STRING);

-Récupère l’identifiant et supprime les caractères spéciaux pour
éviter les attaques

Si l’identifiant ou le mot de passe est vide :

-Stocke un message d’erreur dans $_SESSION['message'].

-Redirige l’utilisateur vers la page de connexion.

- Appelle getAdministrateurByIdentifiant($identifiant) pour chercher
l’administrateur correspondant en base.
- Cette méthode doit retourner un objet Administrateur si l’utilisateur
existe, sinon null
-Si aucun administrateur n’a été trouvé, un message d’erreur est affiché
et l'utilisateur est redirigé vers index.php?page=loginAdmin.

 password_verify($password, $admin->getPassword()) :

●​ Compare le mot de passe entré avec celui stocké en base
(haché).

●​ Retourne true si les deux correspondent.

 Si le mot de passe est incorrect :

●​ Affiche un message d'erreur.
●​ Redirige l'utilisateur vers index.php?page=loginAdmin.

●​ Stocke les informations importantes en session :
○​ $_SESSION['admin'] = $admin->getIdentifiant(); → Stocke

l’identifiant de l'administrateur connecté.
○​ $_SESSION['admin_id'] = $admin->getIdentifiantAdmin(); →

Stocke son ID unique.
○​ $_SESSION['message'] = 'Connexion réussie !'; → Message

de confirmation.

●​ S'assure que la session est bien active avant de la manipuler.
●​ Si la session n'était pas déjà démarrée, cela l'initialise.
●​ Supprime la session en cours du serveur.
●​ Cela signifie que toutes les variables de session sont supprimées.
●​ Supprime la session en cours du serveur.
●​ Cela signifie que toutes les variables de session sont supprimées.

 -Chaque contrôleur correspond à une entité et gère les actions
associées (ex : ClientController.php gère les actions liées aux clients).

 -Contiennent des méthodes qui reçoivent une requête HTTP, effectuent
un traitement et retournent une réponse.

 -Appellent les modèles pour récupérer des données et les envoient aux
vues.

4. Le Routeur (src/Routing/)

Le routeur gère les URL et définit quel contrôleur doit être exécuté.

Ici le router est router.php

Associe chaque URL à un contrôleur spécifique.

Ce tableau définit les routes de l’application sous la forme :

●​ Clé → Nom de la page (récupérée via $_GET['page'] dans
l’URL).

●​ Valeur → Tableau contenant :
○​ La classe du contrôleur (DefaultController::class).
○​ La méthode à appeler (home, error404, etc.).

5. Les Templates (templates/)

Les templates contiennent le code HTML affiché aux utilisateurs.

-Affichent les données envoyées par les contrôleurs.

-Utilisent Twig pour générer du HTML dynamique qui se propage sur
plusieurs pages comme la base.html.twig dont le footer et le header se
propage sur les autres pages .

Explication de comment le tout marche :

-Un utilisateur fait une requête HTTP​
 → /clients/1

 Le routeur (Router.php) détermine quel contrôleur doit être appelé​
 → ClientController.php

 Le contrôleur exécute une action et appelle un modèle pour récupérer
les données​
 → ClientModel.php va chercher le client en base de données.

 Les données sont envoyées à un template Twig (templates/)​
 → show.html.twig

 Twig génère la page HTML et l'affiche à l’utilisateur.

{% block content %} : Zone où le contenu spécifique de
chaque page sera affiché.

{% if session.admin is defined and session.admin
is not empty %} : Vérifie si un administrateur est connecté
pour afficher le menu admin.

ANNEXE

Dictionnaire de Donnée et dépendances Fonctionnelles

DICTIONNAIRE DE DONNÉE

Nom de l'Attribut Type de Donnée Description Contraintes

Circuit

Id INT Identifiant unique du
circuit

Clé primaire

Descriptif Varchar (255) Descriptif du circuit Not null

Ville_depart Varchar (100) Ville de départ du
circuit

 Not null

Ville_arrivée Varchar (100) Ville d’arrivée du circuit Not null

Pays_depart Varchar (100) Pays de départ du
circuit

 Not null

Pays_arrivée Varchar (100) Pays d’arrivée du
circuit

 Not null

Date_depart DATE Date de départ Not null

Nbr_place_dispo Varchar (100) Nbr place sur le circuit Not null

Duree TIME Durée du circuit En jour

prixInscription Decimal (10,2) prix pour l’inscription au
circuit

Etape

Ordre INT Identifiant unique de
l’etape

Clé primaire

Nom_lieu Varchar (100) Nom de l’étape Not null

Date_etape DATE Not null

Duree TIME Not null

LieuAVisite

Nom_lieux INT Identifiant lieu a visité Clé primaire

Ville Varchar (100)

Pays Varchar (100)

Descriptif Varchar (255) Not null

Prix_visite FLOAT Prix visite du lieu visité
(peut être gratuit)

 Not null

Client

Id INT Identifiant client Clé primaire

Nom Varchar (100) Nom client Not null

Prenom Varchar (100) Prenom client Not null

Date_de_naissance DATE Date de naissance du
client

 Not null

Reservation_client

Id_reservation INT Identifiant_reservation Clé primaire

Date_reservation DATE Date de réservation Not null

Nbr_place_reservation Varchar (100) Nombre de place de
réservations

 Not null

Beneficiaire

Id_beneficiaire INT Identifiant du
bénéficiaire

Clé primaire

Nom Varchar (100) Nom du bénéficiaire Not null

Prenom Varchar (100) Prenom du bénéficiaire Not null

Detail_beneficiaire

Nbr_personne Varchar (100) Nombre de bénéficiaire Not null

Date_reservation DATE Date de la réservation
du bénéficiaire

 Not null

Admin

identifiantAdmin INT identifiant de la admin clé primaire

Nom Varchar (100) nom de l’admin Not null

identifiant Varchar (100) pseudo unique, note null

password Varchar (255) mot de pass de l’admin Not null

Dépendances fonctionnelles

Circuit

IdentifiantCircuit → (Descriptif, VilleDepart, PaysDepart, VilleArrivee, PaysArrivee,
DateDepart, NbrPlaceDisponible, Duree, PrixInscription)

Etape

(identifiantCricuit, Ordre) →

(Nom_lieu, Ville, Pays, Date_etape, Duree)

Lieu à visiter

(Nom_lieu, Ville, Pays) →

(Descriptif, Prix_visite)

Client

Id_client →

(Nom, Prenom, Date de naissance)

Reservation_client

Id_reservation →

(Date_reservation, Nbr_de_place)

Bénéficiaire

Id_bénéficiaire →

(Nom, prénom)

Détail bénéficiaire

(Id_reservation, id beneficiaire) →

(nbr_personne, prix, Date_reservation)

Admin

Id_admin → (Nom, identifiant, password)

 MLD​

Conclusion :

Ce projet nous a appris à améliorer nos requêtes SQL, à gérer une base de données
en lien avec une application de voyage. Le travail de groupe au niveau de
l’organisation et le partage des connaissances nous a entrainer pour nos projets
futurs.

Problèmes rencontrées :

-​ 1 dev et 2 réseaux (rééquilibrer les groupes sur les projets importants dans
une spécialité en particulier)

-​ découvrir le javaScript pour les inscriptions pour améliorer notre application
-​ Manque de temp pour développer l’application

Au niveau des axes d’amélioration :

-​ Mettre au moins 2 dev pour mieux répartir les tâches (permet de faire le
back-end et le front-end)

-​ La BDD peut être améliorer avec un héritage (on crée une table users qu’on lie
avec admin / client / bénéficiaire)

-​ Possibilité du paiement du client (il peut réservé mais pas payer) pas de page
de paiement et de sécurité

