
Projet transversale — Solution web
“Projet de groupe : Préparation et présentation d’un

projet solution web”

Participants :

Antoine BERTHE
Tom CLEMENT
William COLLE
Clément SALINGUE
Groupe numéro 2
Projet encadré par :

Gregory BOUDRINGHIN

Préparation et présentation d’un
projet solution web - Première
Année, 2025

EPSI — Ecole de l’ingénierie
informatique, Arras

1/ Compréhension du sujet :​

Contexte :
Pour ce projet, on doit réaliser un service web de livrables qui n’accepte que l’envoi
de fichiers ZIP et de fichiers powerpoint. Le site doit s’adapter à tous les écrans. ​

Problématique :
Comment concevoir un service web sécurisé et ergonomique permettant la gestion
et le dépôt de livrables pour un usage collaboratif tout en respectant les contraintes
techniques spécifiques ?

Sous - Problématique :
. Gestion des livrables côté administration :​
Comment permettre la création, modification, suppression et visualisation des
dossiers et fichiers tout en assurant une interface utilisateur simple et intuitive ?

. Soumission des livrables côté utilisateur :​
Comment garantir une soumission de fichiers restreinte aux formats ZIP et
PowerPoint dans un système d’arborescence des dossiers ?

. Sécurité et performance du service web :​
Comment sécuriser les données échangées et organiser le développement pour que
le site reste performant ?

Objectif :
Rendre le site fonctionnel avec les couleurs de l’EPSI

2/ Brainstorming :​

Trouver les idées :

Côté administration :
. Création d’un formulaire pour gérer les dossiers.
. Intégration d’une arborescence dynamique affichant dossiers et fichiers (utilisation
de PHP).
. Mise en place d’une confirmation double avant suppression + second popup pour
être sûr de le supprimer).
. Gestion de la date limite avec un calendrier (input type="date").
. Permettre à l’admin de choisir l’extension attendue par l’utilisateur
. Envoyer un mail 5 jours avant si l’utilisateur n’a toujours rien envoyer pour un
rappel
. L’admin peut accepter/refuser/recommencer un fichier envoyer par l’utilisateur

Côté utilisateur :
. Affichage de l’arborescence des dossiers envoi de fichiers limité aux formats ZIP
PowerPoint avec vérification côté client et serveur (PHP).
. Affichage des notifications de succès ou d’erreur pour chaque action (exemple :
fichier mal formaté, dépôt réussi).

Performance :
. Vérification des extensions de fichiers à plusieurs niveaux (client et serveur).
. Protection contre les injections (utilisation de PDO pour les interactions avec une
base de données).
. Les fichiers vont être stockés physiquement.

Analyse de l’existant + sources :

Ressources techniques :

Formulaires HTML5 :

<form>, <input type="file">, <input type="date">.

Gestion des fichiers avec PHP :

opendir(), readdir(), unlink() pour lire et gérer les fichiers.

CRUD :

Utilisation d’une base de données MySQL pour gérer les informations sur les
dossiers et fichiers (nom, section, date limite, etc.).

Sources :

https://www.php.net/manual/fr/index.php

https://developer.mozilla.org/fr/docs/Learn_web_development/Core/Structuring_content

https://www.letecode.com/php-mysql-pour-debutant-application-crud-inserer-lire-modifier-et-
supprimer

https://www.jstree.com/docs/html/

https://www.php.net/manual/fr/index.php
https://developer.mozilla.org/fr/docs/Learn_web_development/Core/Structuring_content
https://www.letecode.com/php-mysql-pour-debutant-application-crud-inserer-lire-modifier-et-supprimer
https://www.letecode.com/php-mysql-pour-debutant-application-crud-inserer-lire-modifier-et-supprimer
https://www.jstree.com/docs/html/

3/ Choix des techniques fonctionnelles :

Côté administration (admin.php)

. Qui : Destiné aux administrateurs ayant des droits spécifiques.

. Quoi : CRUD sur les dossiers (création, modification, suppression,
visualisation).

. Où : Accessible via une page sécurisée (formulaire de type html).

. Quand : À tout moment, avec restrictions d’accès (authentification).

. Comment :

. Utilisation de PHP pour gérer les dossiers et fichiers sur le serveur.

. Base de données MySQL pour stocker les informations de gestion.

. Intégration d’un système d’arborescence.

. Pourquoi : Permettre une gestion centralisée des livrables.

Côté utilisateur (index.php)

. Qui : Utilisateurs souhaitant soumettre des livrables.

. Quoi : Envoi de fichiers (ZIP et PPT uniquement) dans des dossiers
prédéfinis.

. Où : Via une page web responsive.

. Quand : Dans les limites des dates définies par l’administrateur.

. Comment :

. Interface utilisateur responsive (HTML5, CSS3, .

. Vérification des fichiers côté client et serveur.

. Arborescence des dossiers.

. Pourquoi : Faciliter le dépôt des livrables en respectant les formats autorisés.

4/ Découpage de tâches :

Tâche 1 :
Conception de la base de données
Création de la table depots_fichiers :
Colonnes : id, utilisateur_id, nom_fichier, date_envoi.
Création de la table devoirs_rendus :
Colonnes : id, utilisateur_id, depot_id, date_rendu.
Création de la table utilisateurs
Tâche 2 :
Développement côté administration
Page admin.php :

Formulaire de création de dossier avec champ section et date limite.
Arborescence (lecture des dossiers et fichiers depuis le serveur).
CRUD sur les dossiers (formulaire de modification et boutons de
suppression).
Ajout des messages de confirmation avant suppression.

Tâche 3 :
Développement côté utilisateur
Page index.php :
Affichage de l’arborescence des dossiers
Formulaire d’envoi de fichiers limité aux ZIP et PPT.
Messages de confirmation (succès/erreur).

Tâche 4 : Responsiveness et design
Intégration des couleurs et logos EPSI/WIS.
Utilisation de CSS3 pour adaptabilité.

Tâche 5 : Tests et déploiement
Tests unitaires : Validation des fichiers, vérification CRUD.
Tests d’intégration : Interaction entre admin.php et index.php.
Déploiement final.

​
​

5/ MCD MLD :

Dans ce MCD on constate que nous retrouvons que des relations père fils :

-​ l’utilisateur peut mettre 1 ou plus commentaire or le commentaire appartient à
1 et 1 seul utilisateur

-​ un commentaire appartient à 1 seul dépôts de fichier or le dépôt de fichier
peut recevoir aucun ou plusieur commentaire

-​ le dépôt de fichier et en lien avec 1 et 1 seul utilisateur or l’utilisateur peut ce
rendre sur plusieur dépôt de fichier

-​ l’utilisateur rend 1 ou plusieurs devoirs mais les devoirs appartiennent à 1 et 1
seul utilisateur

-​ les devoirs sont rendu sur 1 seul dépôt néanmoins les dépôts peuvent
recevoirs plusieurs devoirs

6/ DICTIONNAIRE DE DONNEES

Nom de l'Attribut Type de Donnée Description Contraintes

utilisateur

id_utilisateur INT identifiant users clé primaire

nom Varchar(50) nom users

prenom Varchar(50) prenom users not null

mail Varchar(50) mail users not null

mot_de_passe Varchar(255) mdp users not null

role Char(50) role users

date_creation DateTime date de création du
users

commentaire

id_commentaire INT identifiant
commentaire

clé primaire

contenu TEXT contenu du
commentaire

Not null

date_creation DateTime date de création du
commentaire

depot_fichier

id_depot INT identifiant depot clé primaire

nom_fichier Varchar(255) nom du fichier not null

chemin_fichier Varchar(255) chemin du fichier not null

date_envoie DateTime date envoie du
fichier

not null

devoirs_rendus

id_devoirs_rendus INT identifiant du devoir clé primaire

fichier Varchar(255) fichier du devoir not null

date_rendu DateTime date de rendu du
devoir

not null

7/ DÉPENDANCE FONCTIONNELLE

utilisateur
Id_utilisateur -> (nom, prenom, email, mot_de_passe, role, date_creation)

Commentaire
Id_Commentaire -> (contenu, date_creation, #id_utilisateur, #Id_depot)

depot_fichier
Id_depot -> (nom_fichier, chemin_fichier, date_envoie, #id_utilisateur)

devoirs_rendus
Id_devoirs_rendus -> (fichier, date_rendu, #id_depot, #id_utilisateur)

8/ Maquette

9/ Explication des techniques utilisé et du code :

Pour ce projet nous avons donc utilisé du HTML (HyperText Markup Language) qui permet
de structurer le contenu d’une page : titres, paragraphes, images, liens, formulaires, etc.
du CSS (Cascading Style Sheets) qui permet de rendre le site joli en modifiant les couleurs,
la taille du texte, la mise en page, les animations, etc.
et du PHP (Hypertext Preprocessor) qui est un langage côté serveur qui permet de rendre le
site dynamique : gérer des formulaires, se connecter à une base de données, afficher des
données différentes selon les utilisateurs, etc.

Partie explicative sur des fonctionnalité du CSS

Pour le body , on a changé la police sur toute la page
avec un fond (background-color)gris clair, nous avons
enlevé les marges et le padding par défaut du
navigateur et ajouté une couleur du texte qui est gris
foncé .

pour le header : ce qui change c’est le display : flex ca
permet de bien placer les éléments.
le justify-content: space-between : permet d’avoir un
espace égal entre les blocs (logo a gauche , titre au
centre et menu à droite)
flex-wrap:wrap: permet aux éléments d’aller à la ligne
quand on rétrécie l’ecran.

Pour les boutons, on a le padding qui permets
d’arrondir les bords.
le cursor : pointeur permet de changer le pointeur de la
souris quand on passe sur le bouton.
button:hover: permet d’avoir un changement de couleur
quand on survole le bouton

pour les div la box-shadow: permet d’avoir un petit
ombrage

le * est un sélecteur universel qui permet d’appliquer le
css à tous les éléments de la page HTML.

Le text-decoration: underline sert à lorsqu'on passe la
souris dessus ça devient souligné.

Partie explicative sur des fonctionnalité du HTML

Les balises titles permettent d’afficher le texte dans l’onglet du navigateur
●​ <link href="../css/createDepot.css" rel="stylesheet"/> c’est le lien en

relation avec le fichier css pour avoir le style de la page
●​ <link rel="icon" type="image/png" href="https://..."> permet d’afficher le logo

dans l’onglet du navigateur
La balise body c’est tout ce que voit l’utilisateur
Le header qui est l’en-tête de page comporte les images avec une différentes taille, le titre
principal et un lien accueil qui retourne qui retourne vers indexAdmin

​

<form method="POST"
action="createDepot.php"
enctype="multipart/form-data"> : c’est un
formulaire qui permet à l’utilisateur de saisir
les infos du devoirs à déposer.

ensuite on a les champs du formulaire
avec un menu déroulant pour choisir la
classe concernée
ensuite on peut choisir la matière
puis mettre une description
une date limite
un fichier à uploader qui peut être
seulement en .zip ou .pptx
et pour finir un bouton de soumission du
formulaire

le main correspond au contenu principal on

retrouve dedans <main>
 <?php if (empty($rendus)): ?>
 <p>Aucun devoir n'a été rendu pour ce
dépôt.</p> ca vérifie si la variable $rendus
est vide et si c’est vide on a un message si
c’est pas vide ca contient les devoirs .

Ca affiche un tableau contenant les colonnes Etudiant , Fichier , Date de rendu et le bouton
pour télécharger.

Partie explicative sur des fonctionnalité du PHP

Ce code PHP permet l’affichage de chaque ligne de devoir, c’est une boucle qui parcourt
chaque devoir rendu et affiche le nom complet de l'étudiant, le nom du fichier (basename
permet d’afficher juste le nom pas le chemin complet)
la date de rendu et le bouton pour télécharger le fichier)

 permet de démarrer la session pour accéder
aux données de l’utilisateur connecté
si aucun utilisateurs n’est connecté ca
renvoie vers la page de login

et si l’utilisateur est connecté mais pas admin
il est redirigé vers sa page utilisateur
et on a la connexion avec la base de donnée

On commence par savoir si le formulaire
a été soumis en méthode POST
On récupère ensuite toutes les données
du formulaire .
On crée ensuite un fichier Dans
uploads/[matière]/[nom_du_devoir]/ et si
le fichier n’existe pas on le crée avec les
droits 0777.

$uploadFile = $subDir . basename($file['name']); on crée le chemin du ficher et on le
déplace depuis un emplacement temporaire vers un bon fichier .

ensuite on insère l’id de l'utilisateur , le nom du devoir , le chemin du fichier, la date et l’heure
dans la base de donnée.

Pour rendre un devoir , au début on récupère
l’identifiant de l’utilisateur connecté et la
récupération de l’id dépôt via le $_Get par l’URL .

Si l’id du dépôt est présent on recupere les infos
via la BDD et on récupère donc les informations
nom_fichier ect .

sinon le dossier est introuvable.

si le formulaire a été soumis en post et que le champ “mondevoir” contient un fichier, on
récupere le fichier envoyé avec le nom du fichier et ou il va être stocké avec $uploadir.

On détermine le chemin complet du fichier et on déplace le fichier temporaire vers le dossier
final
et si ca reussit ca enregiste les inforamtions dans la table devoir_rendus.

Permet de supprimer un dépôt dans la base de donnée et sur le serveur que côté admin.

Si un dépôt est présent et qu’elle est appelé en POST on le récupère, on prépare une
requête pour récupérer le dépôt correspondant à l’id dont $depot contient toutes les infos.
On récupère le chemin du fichier

si les dossiers existe parcourt
récursivement le dossier et supprime tout
ce qu’il contient c’est à dire les dossiers
en profondeurs , les fichiers avec (unlink()
et les dossier vide avec (rmdir)

Pour s’inscrire , on vérifie si le formulaire

a été soumis en POST lorsque l’utilisateur
clique sur s’inscrire

On récupère les infos saisies par l’utilisateur.
le mot de passe est crypté avec
password_hash et le rôle par défaut est
utilisateur il faut changer le rôle via la base de
donnée.

ensuite on vérifie si l’adresse est déjà utilisée
dans la table utilisateur et ca envoie les
données dans la table si tout est bon et ca
envoie l’utilisateur sur la page login .

​

On récupère les données du formulaire ensuite
on cherche dans la BDD l’utilisateur par son
email et si on la trouve et on récupère toutes les
données.

ensuite on compare les mots de passe avec deux conditions ; si l’utilisateur existe et si le
mot de passe est correct.
on enregistre l’utilisateur dans la session si il est admin ou utilisateur
et ça le redirige vers la page correspondante.

10/ Difficultés rencontrées
-difficultés à se répartir les tâches et à avoir un travail équitable sur l’ensemble du projet.
- détail à régler dans le projet comme la partie sur les commentaires ou la date limite à
rendre
-groupe composé de 1 dev et 3 réseaux ce qui à particulièrement été compliqué sur la partie
dev
- code qui n’as pas pu suivre une architecture MVC avec l’utilisation de fichier (entité,
contrôleur,modem, router, et twig) en raison de connaissances diversifiées.
-difficulté à répondre à l'entièreté du sujet demandé
- difficultés rencontrés sur git hub lorsqu'on voulait “push” ou “pull” on avait des messages
d’erreur comme “permission denied” ou des conflits ce qui retardait le travail.

11/ Améliorations
-Utilisation de l’architecture MVC et du CRUD avec les entités ,models , contrôleurs ect afin
d’avoir un code très propres et bien rangé
- Amélioration du code et des du css pour certaines pages
-Améliorer la partie commentaires , date de limite et la partie admin pour voir les projets des
élèves selon la matière.
-Améliorer la répartition du travail au sein du groupe.

12/ Conclusion :

Ce projet de groupe avait pour objectif de développer une plateforme web en PHP,
HTML et CSS permettant aux enseignants de créer des dépôts de devoirs, et aux
étudiants d’y déposer leurs travaux.

Ce travail nous a permis de consolider nos compétences en développement web
(formulaires, gestion des fichiers, base de données, sessions) tout en apprenant à
collaborer efficacement en équipe. Il nous a également sensibilisés à l’importance de
la répartition des tâches, de la communication et de l’entraide dans un projet
collectif.

	Ressources techniques :
	Sources :
	Côté administration (admin.php)
	Côté utilisateur (index.php)
	

